电子与控制

多机场终端区进场航班协同排序方法

  • 马园园 ,
  • 胡明华 ,
  • 张洪海 ,
  • 尹嘉男 ,
  • 吴凡
展开
  • 1. 南京航空航天大学 民航学院, 南京 211106;
    2. 国家空管飞行流量管理技术重点实验室, 南京 211106
马园园 女, 博士研究生。主要研究方向: 大都市圈机场群协同运行管理, 空中交通流量管理, 空中交通系统建模与仿真。 Tel: 025-52112669 E-mail: mayuanyuan2121@126.com

收稿日期: 2014-07-22

  修回日期: 2014-10-08

  网络出版日期: 2014-10-27

基金资助

国家自然科学基金 (61104159, 71301074); 国家自然科学基金民航联合研究基金重点项目 (U1333202); 中央高校基本科研业务费专项资金; 江苏省普通高校研究生科研创新计划资助项目 (KYLX_0290)

Optimized method for collaborative arrival sequencing and scheduling in metroplex terminal area

  • MA Yuanyuan ,
  • HU Minghua ,
  • ZHANG Honghai ,
  • YIN Jia'nan ,
  • WU Fan
Expand
  • 1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. National Key Laboratory of Air Traffic Flow Management, Nanjing 211106, China

Received date: 2014-07-22

  Revised date: 2014-10-08

  Online published: 2014-10-27

Supported by

National Natural Science Foundation of China (61104159, 71301074); Joint Funds of the National Natural Science Foundation and Civil Aviation Administrtion of China (U1333202); Fundamental Research Funds for the Central Universities; Funding of Jiangsu Innovation Program for Graduate Education (KYLX_0290)

摘要

为有效缓解大都市圈机场群日益严重的空域拥堵和航班延误现状,系统研究了多机场终端区进场航班协同排序问题。通过深入剖析多机场终端区时空运行特性,综合考虑移交间隔、尾流间隔和多跑道运行间隔等约束限制,科学权衡安全、经济和公平等各方利益需求,引入多元受限时间窗的创新理念,建立了多机场终端区进场航班协同排序模型。结合多目标优化及遗传算法基本理论,设计了带精英策略的非支配排序遗传算法,寻求多机场终端区进场航班协同排序问题的Pareto最优解。仿真实验表明,模型可对多机场终端区进场航班进行优化排序,显著降低航班延误总时间,有效增强多机场空域资源使用公平性。与经典的先到先服务(FCFS)策略相比,协同排序策略优化效果较为显著,其中航班延误时间减少了31.0%,所提方法可显著缓解大都市圈机场群航班延误现状,有效提升航空运输服务品质。

本文引用格式

马园园 , 胡明华 , 张洪海 , 尹嘉男 , 吴凡 . 多机场终端区进场航班协同排序方法[J]. 航空学报, 2015 , 36(7) : 2279 -2290 . DOI: 10.7527/S1000-6893.2014.0280

Abstract

In order to relieve the congestions and delays at multi-airport system in metroplex region, an optimized method for collaborative arrival sequencing and scheduling in metroplex terminal area is proposed in this work. By analyzing deeply the spatio-temporal characteristics of metroplex terminal area and taking into consideration control handoff separation, wake turbulence separation and multi-runway operating separation, an optimized model for collaborative arrival sequencing and scheduling in metroplex terminal area is established to balance scientifically different parties in interest such as safety, economy and fairness with the introduction of innovative idea of multi-restricted time window. An elitist non-dominated sorting genetic algorithm is designed combined with the multi-objective optimization theory and applied to solving the problem of multi-airport arrival sequencing and scheduling to search for the Pareto optimal solutions. Simulation results show that the above model and algorithm can achieve optimized sequencing and scheduling for arrivals in metroplex terminal area, remarkably reducing the flight delays, and effectively enhancing the fairness of using the common airspace resources in multi-airport system. Compared with the classical strategy of first-come-first-served (FCFS), the optimized one brings about a striking effect which results in a 31.0% reduction in flight delays. The proposed method can significantly relieve the flight delays of arrivals at multi-airport system in metroplex region and effectively improve the service quality of air transportation.

参考文献

[1] Dear P G. The dynamic scheduling of aircraft in the near terminal area, FTL R76-9[R]. Cambridge: Flight Transportation Laboratory, 1976.
[2] Psaraftis H N. A dynamic programming approach to the aircraft sequencing problem, FTLR78-4[R]. Cambridge: Flight Transportation Laboratory, 1978.
[3] Bianco L, Rinaldi G, Ricciardelli S, et al. Scheduling tasks with sequence-dependent processing times[J]. Naval Research Logistics, 1988, 35(2): 177-184.
[4] Beasley J E, Krishnamoorthy M, Sharaiha Y M, et al. Scheduling aircraft landings-the static case[J]. Transportation Science, 2000, 34(2): 180-197.
[5] Ernst A T, Krishnamoorthy M, Storer R H. Heuristic and exact algorithms for scheduling aircraft landings[J]. Networks, 1999, 34(3): 229-241.
[6] Abela J, Abramson D, Krishnamoorthy M, et al. Computing optimal schedules for landing aircraft[C]//Proceedings of the 12th National Conference of the Australian Society for Operations Research, 1995: 71-90.
[7] Xun H B, Xu X H, Chen X H. Analysis of sequencing algorithms for arrival traffic in terminal area[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1999, 31(2): 178-183 (in Chinese). 荀海波, 徐肖豪, 陈旭华. 机场终端区着陆次序的排序规划[J]. 南京航空航天大学学报, 1999, 31(2): 178-183.
[8] Yang Q H, You Z S, Feng Z L, et al. Scheduling arrival aircrafts on multiple runways based on an improved genetic algorithm[J]. Journal of Sichuan University: Engineering Science Edition, 2006, 38(2): 141-145 (in Chinese). 杨秋辉, 游志胜, 冯子亮, 等. 一种改进的基于遗传算法的多跑道到达飞机调度[J]. 四川大学学报: 工程科学版, 2006, 38(2): 141-145.
[9] Yang J M. Research on algorithms for scheduling arrival aircrafts in terminal area[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese). 杨晶妹. 终端区进场航班排序方法研究[D]. 南京: 南京航空航天大学, 2010.
[10] Idris H. Queuing analysis of interdependencies between multiple-airport system operations[C]//9th AIAA Aviation, Technology, Integration, and Operations Conference. Reston: AIAA, 2009: 1-10.
[11] Farah I, Kansou A, Yassine A, et al. Ant colony optimization for aircraft landings[C]//2011 4th International Conference on Logistics (LOGISTIQUA). Piscataway, NJ: IEEE Press, 2011: 235-240.
[12] Bojanowski L, Harikiopoulo D, Neogi N. Multi-runway aircraft sequencing at congested airports[C]//American Control Conference. Piscataway, NJ: IEEE Press, 2011: 2752-2758.
[13] Andreeva M A. Aircraft resequencing with available arrival time window constraints[C]//2012 International MultiConference of Engineers and Computer Scientists. Hong Kong: Newswood Limited, 2012: 1513-1517.
[14] Yin J N, Hu M H, Peng Y, et al. Optimized method for multi-runway spatio-temporal resource scheduling in the mode of dependent approaches[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 3063-3072 (in Chinese). 尹嘉男, 胡明华, 彭瑛, 等. 相关进近模式下多跑道时空资源优化调度方法[J]. 航空学报, 2014, 35(11): 3063-3072.
[15] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

文章导航

/