一种用于深空自主无线电的码速率估计算法
收稿日期: 2014-07-21
修回日期: 2014-10-13
网络出版日期: 2014-10-27
基金资助
国家"863"计划 (2012AA7014065); 新世纪优秀人才支持计划 (NCET-12-0030); 航天支撑技术基金
A symbol rate estimation algorithm for autonomous radio in deep space
Received date: 2014-07-21
Revised date: 2014-10-13
Online published: 2014-10-27
Supported by
National High-tech Research and Development Program of China (2012AA7014065); Program for New Century Excellent Talents in University (NCET-12-0030); Astronautic Supporting Technology Foundation of China
宋青平 , 刘荣科 . 一种用于深空自主无线电的码速率估计算法[J]. 航空学报, 2015 , 36(7) : 2301 -2309 . DOI: 10.7527/S1000-6893.2014.0288
The blind symbol rate estimation algorithms for autonomous radio in deep space are presented. In view of the unknown symbol starting point, an improved symbol rate estimation algorithm based on split-symbol moments estimator (SSME) is proposed according to the theoretical analysis of the estimation error. This new algorithm estimates the signal-to-noise ratio (SNR) in different ranges and selects the maximum value, which ensures the symbol rate estimation accuracy. In addition, the computational complexity of the new algorithm is compared with the conventional delay and multiply algorithm, improved delay and multiply algorithm with accumulations. The simulation results show that the proposed algorithm can effectively complete the task of symbol rate estimation at low SNR. Its symbol rate error estimation probability is lower than that of delay and multiply algorithm, and is close to that of delay and multiply algorithm with accumulations. However, the computational complexity of the new algorithm is less than 10% of that of delay and multiply algorithm with accumulations.
[1] Haskins C B, DeBoy C C. Deep-space transceivers—an innovative approach to spacecraft communications[J]. Proceedings of the IEEE, 2007, 95(10): 2009-2018.
[2] Zhang N T, Li H, Zhang Q Y. Thought and developing trend in deep space exploration and communication[J]. Journal of Astronautics, 2007, 28(4): 786-793 (in Chinese). 张乃通, 李晖, 张钦宇. 深空探测通信技术发展趋势及思考[J]. 宇航学报, 2007, 28(4): 786-793.
[3] Hamkins J, Simon M. Autonomous software-defined radio receivers for deep space applications[M]. New York: John Wiley & Sons Inc., 2006: 1-9.
[4] Hamkins J, Simon M, Dolinar S, et al. An overview of the architecture of an autonomous radio, IPN progress report, 42-159[R]. Pasadena, California: Jet Propulsion Laboratory, 2004.
[5] Wang L, Wang Z G, Xiong W M. A blind frequency offset estimator for coherent M-PSK system in autonomous radio[J]. Circuits, Systems, and Signal Processing, 2013, 32(3): 1205-1217.
[6] Reed R E, Wickert M A. Minimization of detection of symbol-rate spectral lines by delay and multiply receivers[J]. IEEE Transactions on Communications, 1988, 36(1): 118-120.
[7] Reed R E, Wickert M A. Symbol-rate detection by a power-series-nonlinear envelope detector receiver[C]//IEEE International Conference on Computers and Communications. Piscataway, NJ: IEEE Press, 1988: 179-183.
[8] Dong Z Q, Hu H Y, Yu H Y. The detection, symbol period and chip width estimation of DSSS signals based on delay-multiply, correlation and spectrum analysis[J]. Journal of Electronics & Information Technology, 2008, 30(4): 840-842 (in Chinese). 董占奇, 胡捍英, 于宏毅. 基于延迟相乘-相关及谱分析的直扩信号检测与符号周期、码片时宽估计分析[J]. 电子与信息学报, 2008, 30(4): 840-842.
[9] Chan Y T, Plews J W, Ho K C. Symbol rate estimation by the wavelet transform[C]//IEEE International Symposium on Circuits and Systems. Piscataway, NJ: IEEE Press, 1997: 177-180.
[10] Feng X Z, Yang J, Luo F L. Symbol rate estimation of digital signals based on wavelet transform[J]. Journal of System Simulation, 2008, 20(5): 1259-1261 (in Chinese). 冯旭哲, 杨俊, 罗飞路. 基于小波变换的通信信号码元速率估计[J]. 系统仿真学报, 2008, 20(5): 1259-1261.
[11] Simon M, Dolinar S. Improving signal-to-noise ratio estimation for autonomous receivers, IPN progress report, 42-159[R]. Pasadena, California: Jet Propulsion Laboratory, 2004.
[12] Simon M, Dolinar S. Signal-to-Noise ratio estimation for autonomous receiver operation[C]//IEEE Global Telecommunications Conference. Piscataway, NJ: IEEE Press, 2004: 282-287.
[13] Simon M, Dolinar S. Improving SNR estimation for autonomous receivers[J]. IEEE Transactions on Communications, 2005, 53(6): 1063-1073.
[14] Duan R F, Liu R K, Zhou Y, et al. A low-complexity coarse carrier acquisition algorithm for signals with extremely low signal noise ratio and high dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 662-669 (in Chinese). 段瑞枫, 刘荣科, 周游, 等. 一种低复杂度的极低信噪比高动态信号载波粗捕获算法[J]. 航空学报, 2013, 34(3): 662-669.
[15] Zhang R Y, Zhan Y F, Dai X J, et al. Robust algorithm for high-dynamic and low-signal-to-noise ratio signal reception in deep space communications[J]. IET Communications, 2013, 7(16): 1818-1824.
[16] Cui P Y, Xu R, Zhu S Y, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 13-28 (in Chinese). 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1): 13-28.
[17] Valles E L, Wesel R D, Villasenor J D, et al. Pilotless carrier phase-synchronization via LDPC code feedback[C]//IEEE Military Communications Conference. Piscataway, NJ: IEEE Press, 2010: 2068-2073.
[18] Peng Y H, Tang B, Lyu M. Chip rate estimation of the DS/SS signal based on SSME algorithm[J]. Journal of Electronics & Information Technology, 2010, 32(7): 1649-1653 (in Chinese). 彭艳华, 唐斌, 吕明. 基于SSME的DS/SS信号码速率估计算法[J]. 电子与信息学报, 2010, 32(7): 1649-1653.
[19] Li X S, Guo W, Xie X B. A GPS bit synchronization method for high-dynamic and weak signal[J]. Journal of Electronics & Information Technology, 2011, 33(10): 2521-2525 (in Chinese). 李新山, 郭伟, 谢先斌. 一种高动态、弱信号GPS比特同步方法[J]. 电子与信息学报, 2011, 33(10): 2521-2525.
[20] An Y, Mou R Z, Yan Y P. Adaptive non-coherent integration and threshold strategy for acquisition[J]. Journal of System Simulation, 2011, 23(4): 817-821 (in Chinese). 安勇, 牟荣增, 阎跃鹏. 自适应非相干累加次数和门限的捕获策略研究[J]. 系统仿真学报, 2011, 23(4): 817-821.
/
〈 | 〉 |