大部件对接中iGPS高精度位姿测量优化设计
收稿日期: 2014-04-25
修回日期: 2014-10-16
网络出版日期: 2014-10-27
基金资助
国家"863"计划 (2013AAxxx0406)
Optimal design based on iGPS high-precision posture measurement for large size component joining
Received date: 2014-04-25
Revised date: 2014-10-16
Online published: 2014-10-27
Supported by
National High-tech Research and Development Program of China (2013AAxxx0406)
为保证大部件对接位姿测量精度,提高对接测量效率,实现大部件最优位姿装配,提出了基于iGPS测量系统的大部件对接位姿测量优化设计方法。首先,基于iGPS系统测量模型和不确定度模型建立对接测量网络,并对其网络测量精度进行仿真分析,优化设计了对接测量网络iGPS多发射器的布站方式;其次,基于对大部件位姿参数求解模型及不确定度模型的仿真分析,优化设计了调姿基准点的布设方式;最后,对某机型大部件对接进行了位姿测量方式的对比实验。结果表明,经过位姿测量优化设计后,大部件对接测量x、y、z的位置调整不确定度均小于0.16 mm,姿态滚转角、俯仰角和偏航角的角度调整不确定度均小于3.1",相较于未经布站优化设计的测量方式,精度至少提高了20%。由此证明该测量优化设计方案能够高效、高精度地对移动大部件进行实时位姿测量,在有效提高大部件对接位姿测量效率及精度方面是可行的。
林雪竹 , 李丽娟 , 曹国华 , 任姣姣 , 郑林斌 , 刘琦 . 大部件对接中iGPS高精度位姿测量优化设计[J]. 航空学报, 2015 , 36(4) : 1299 -1311 . DOI: 10.7527/S1000-6893.2014.0286
In order to ensure the accuracy and improve the efficiency of posture measurement for large size component joining, at the same time, to achieve large size optimal component posture assembly, optimal design technology based on iGPS measurement system of posture measurement for large size component joining has been put forward. Firstly, the joining measurement network based on iGPS system measurement model and uncertainty model is established; then, the accuracy of network measurement is analyzed by simulation and iGPS multi-transmitter station distribution of joining measurement network is designed optimally. Secondly, the station distribution of posture alignment benchmark points is designed optimally based on simulation analysis of large size component posture parameters' solving model and uncertainty model. Finally, posture measurement mode contrast test is conducted on a large size component joining. The results indicate that the position adjustment uncertainty of x, y, z is less than 0.16 mm and the attitude adjustment uncertainty of attitude roll angle, pitch angle and deflection angle is less than 3.1". The accuracy is improved by at least 20% compared to the measurement methods without optimal arrangement design. Consequently, it is proved that the method of measurement optimal design can measure a large mobile part in real time efficiently and with high accuracy, and it is feasible to effectively improve the efficiency and accuracy of large size component measurement .
[1] Qiu B G, Jiang J X, Bi Y B, et al. Posture alignment and joining test system for large aircraft fuselages[J]. Acta Aeronoutica et Astronautica Sinica, 2011, 32(5): 908-919 (in Chinese). 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011, 32(5): 908-919.
[2] Mei Z Y, Fan Y Q. Flexible assembly technique for aircraft parts joining based on laser tracking and positioning[J]. Joumal of Beijing University of Aeronautics and Astronautics, 2009, 35(1): 65-69 (in Chinese). 梅中义, 范玉青. 基于激光跟踪定位的部件对接柔性装配技术[J]. 北京航空航天大学学报, 2009, 35(1): 65-69.
[3] Zhu Y G, Huang X, Li L G, et al. Automation adjustment and tracking measurement of fuselage position and pose[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(7): 1121-1127 (in Chinese). 朱永国, 黄翔, 李泷杲, 等. 中机身位置和姿态调整及其跟踪测量[J]. 机械科学与技术, 2012, 31(7): 1121-1127.
[4] Zhang B, Yao B G, Ke Y L. A novel posture alignment system for aircraft wing assembly[J]. Journal of Zhejiang University Science A, 2009, 10(11) : 1624-1630.
[5] Wang Z, Mastrogiacomo L, Franceschini F, et al. Experimental comparison of dynamic tracking performance of iGPS and laser tracker[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(1-4): 205-213.
[6] Williams G, Chalupa E, Rahhal S. Automated positioning and alignment systems[J]. SAE Transactions, 2000, 109(11): 737-745.
[7] Naing S. Feature based design for jigless assembly[D]. Bedfordshire: Cranfield University, 2004.
[8] Muelaner J E, Wang Z, Jamshidi J, et al. Study of the uncertainty of angle measurement for a rotary-laser auto-matic theodolite(R-LAT)[J]. Proceedings of the Institution of Mechanical Engineers, 2009, 223(B3): 217-229.
[9] Maisano D A, Jamshidi J, Franceschini F ,et al. Indoor GPS: system functionality and initial performance evaluation[J]. International Journal of Manufacturing Research, 2008, 3(3): 335-349.
[10] Maisano D A, Jamshidi J, Franceschini F, et al. Acomparison of two distributed large-volume measurement systems : the mobile spatial coordinate measuring system and the indoor global positioning system[J]. Proceedings of the Institution of Mechanical Engineers, 2009, 223(B3): 511-521.
[11] Du F Z, Chen Z H, Tang X Q. Precision analysis of iGPS measurement field and its application[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1737-1745 (in Chinese). 杜福洲, 陈哲涵, 唐晓青. iGPS测量场精度分析及其应用研究[J]. 航空学报, 2012, 33(9): 1737-1745.
[12] Mautz R. Overview of current indoor positioning systems[J]. Geodesy and Cartography, 2009, 35(1): 18-22.
[13] Apparatus and method for determining position: United States Patent, US6501543B2[P]. 2002-12-31.
[14] Li Y, Zhou Z L, Ma L Q, et al. The evaluation method for the indoor GPS measurement network based on multi-uncertainty fusion algorithm[J]. Acta Metrologica Sinica, 2012, 33(z1): 24-27 (in Chinese). 李洋, 周自力, 马骊群, 等. 基于多不确定度融合的室内GPS测量网评价方法[J]. 计量学报, 2012, 33(z1): 24-27.
[15] Hou H L, Zhou D Y. Measurement method and location optimization of multi-photoelectric theodolite for positioning of aviation weapons[J]. Acta Photonica Sinica, 2008(5): 10-20 (in Chinese) . 侯宏录, 周德云. 光电经纬仪异面交会测量及组网布站优化设计[J]. 光子学报, 2008(5): 10-20.
[16] Du F Z, Wu P. Quality evaluation method for aircraft large components joining based on the position and orientation measurement uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 73-77 (in Chinese). 杜福洲, 吴璞. 基于位姿测量不确定度的飞机对接质量评估[J]. 北京航空航天大学学报, 2013, 39(1): 73-77.
[17] Luo F, Zou F, Zhou W Y. Posture calculating algorithm in large aircraft component butt[J]. Aeronautical Manufacturing Technology, 2011(3): 91-94 (in Chinese). 罗方, 邹方, 周万勇.飞机大部件对接中的位姿计算方法[J]. 航空制造技术, 2011(3): 91-94.
[18] Wang Y H,Han X G. Research on posture evaluation algorithm based on weighted least square for large size component merging[J]. Aviation Precision Manufacturing Technology, 2011, 47(5): 48-51 (in Chinese). 王颖辉, 韩先国. 基于加权最小二乘法的大部件对接位姿评估算法研究[J]. 航空精密制造技术, 2011, 47(5): 48-51.
[19] Zhou T G. Evaluation of uncertainty in measurement with Monte-Carlo method[M]. Beijing: China Zhijian Publishing House, 2013: 42-60 (in Chinese). 周桃庚. 用蒙特卡罗法评定测量不确定度[M]. 北京: 中国质检出版社, 2013: 42-60.
[20] Zhou N. Research on aircraft digital measurement and quality control technology[D]. Changchun: Changchun University of Science and Technology, 2012 (in Chinese). 周娜. 飞机数字化测量及质量控制技术研究[D]. 长春: 长春理工大学, 2012.
/
〈 |
|
〉 |