固体力学与飞行器总体设计

航空透明聚氨酯胶片动态力学性能实验研究

  • 姚小虎 ,
  • 张龙辉 ,
  • 张晓晴 ,
  • 郭伟国 ,
  • 臧曙光
展开
  • 1. 华南理工大学 土木与交通学院, 广州 510640;
    2. 西北工业大学 航空学院, 西安 710072;
    3. 中国建筑材料检验认证中心有限公司, 北京 100024
张龙辉 男, 硕士研究生。主要研究方向: 冲击动力学。 Tel: 020-87111030 E-mail: lhzhang.mechanics@gmail.com;张晓晴 女, 博士, 教授。主要研究方向: 冲击动力学, 航空航天与动力学。 Tel: 020-87111030 E-mail: tcqzhang@scut.edu.cn;郭伟国 男, 博士, 教授。主要研究方向: 金属、复合材料和泡沫材料的动态响应, 材料失效机理、微观结构分析和物理概念本构模型, 结构的动态响应, 动态断裂和动态实验技术。 Tel: 029-88494859 E-mail: weiguo@nwpu.edu.cn;臧曙光 男, 博士, 研究员。主要研究方向: 玻璃材料、无机非金属复合材料性能。 Tel: 010-51167575 E-mail: sgzang@ctc.ac.cn

收稿日期: 2014-08-13

  修回日期: 2014-10-17

  网络出版日期: 2014-10-23

基金资助

国家自然科学基金 (11372113); 国家国际科技合作项目 (2011DFA53080); 爆炸科学与技术国家重点实验室基金 (KFJJ14-2M); 亚热带建筑科学国家重点实验室自主研究课题 (2014ZC18)

Experimental study on dynamic mechanical behavior of aerospace- transparent polyurethane interlayer

  • YAO Xiaohu ,
  • ZHANG Longhui ,
  • ZHANG Xiaoqing ,
  • GUO Weiguo ,
  • ZANG Shuguang
Expand
  • 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    3. China Building Material Test and Certification Center Co.Ltd., Beijing 100024, China

Received date: 2014-08-13

  Revised date: 2014-10-17

  Online published: 2014-10-23

Supported by

National Natural Science Foundation of China (11372113); International Scientific and Technological Cooperation and Special Projects (2011DFA53080); State Key Laboratory of Explosion of Science and Technology (KFJJ14-2M); Independent Research of State Key Laboratory of Subtropical Building Science (2014ZC18)

摘要

对夹层玻璃中聚氨酯胶片的动态力学性能进行系统研究,可以为飞机和高铁风挡玻璃抗冲击性能的设计提供可靠的材料数据和模型。利用温度控制的Hopkinson 拉、压杆试验装置和微型材料试验机(MTS5587)对聚氨酯胶片在-40~50 ℃温度范围、0.001~6 500 s-1应变率范围内的力学行为进行了系统研究。结果表明:航空透明聚氨酯的力学性能具有明显的温度敏感性和应变率敏感性,随着应变率提高或温度降低,聚氨酯胶片的流动应力和割线模量也相应增加,表现出明显的应变率和温度效应,同时两者可能有一定的等效性。温度从-20 ℃下降到-40 ℃时,应力-应变曲线变化显著,表现出向玻璃态转变的特性。在0 ℃以上的温度时,同应变率下,动态拉伸应力-应变曲线的应力值要低于动态压缩曲线的应力值。而在温度低于0 ℃时,在同应变率下,动态拉伸应力-应变曲线的应力值则高于动态压缩曲线的应力值。

本文引用格式

姚小虎 , 张龙辉 , 张晓晴 , 郭伟国 , 臧曙光 . 航空透明聚氨酯胶片动态力学性能实验研究[J]. 航空学报, 2015 , 36(7) : 2236 -2243 . DOI: 10.7527/S1000-6893.2014.0281

Abstract

Study on the dynamic properties of the polyurethane interlayer of laminated glass can provide material data and model for the impact resistance design of windshield of aircraft and high speed rail. The mechanical behavior of the polyurethane interlayer was investigated experimentally with the temperatures from -40 ℃ to 50 ℃ and strain rates from 0.001 s-1 to 6 500 s-1. Tests were performed by MTS5587 servo hydraulic testing machine and the split Hopkinson tension and compression bar, for low and high strain rate tests respectively. The obtained results show that the dynamic tensile response of the polyurethane interlayer is sensitive to temperature and strain rate. As strain rate increases and temperature decreases, flow stress goes up and hardening resistance behavior becomes more apparent. When the temperature decreases from -20 ℃ to -40 ℃, the stress-strain curves change significantly, the specimen transmits from a rubbery behavior to a glassy behavior. When the temperature is above 0 ℃, at a certain strain rate, dynamic tensile stresses are lower than dynamic compressive stresses, but when the temperature is below 0 ℃, dynamic tensile stresses are higher than dynamic compressive stress at the same strain.

参考文献

[1] Polyurethane[EB/OL].[2014-08-13]. http://en.wikipedia.org/wiki/Polyurethane.
[2] Sharma A, Shukla A, Prosser R. Mechanical characterization of soft materials using high speed photography and split Hopkinson pressure bar technique[J]. Journal of Materials Science, 2002, 37(5): 1005-1017.
[3] Roland C M,Twigg J N, Vu Y, et al. High strain rate mechanical behavior of polyurea[J]. Polymer, 2007, 48(2): 574-578.
[4] Yi J, Boyce M C, Lee G F, et al. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes[J]. Polymer, 2006, 47(1): 319-329.
[5] Sarva S S, Deschanel S, Boyce M C, et al. Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates[J]. Polymer, 2007, 48(8): 2208-2213.
[6] Shim J, Mohr D. Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates[J]. International Journal of Impact Engineering, 2009, 36(9): 1116-1127.
[7] Amirkhizi A V,Isaacs J, Mcgee J, et al. An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects[J]. Philosophical Magazine, 2006, 86(36): 5847-5866.
[8] Li C, Lua J. A hyper-viscoelastic constitutive model for polyurea[J]. Materials Letters, 2009, 63(11): 877-880.
[9] Chen W, Zhang B, Forrestal M J. A split Hopkinson bar technique for low-impedance materials[J]. Experimental Mechanics, 1999, 39(2): 81-85.
[10] Wang L, Labibes K, Azari Z, et al. Generalization of split Hopkinson bar technique to use viscoelastic bars[J]. International Journal of Impact Engineering, 1994, 15(5): 669-686.
[11] Zhao H, Gary G, Klepaczko J R. On the use of a viscoelastic split Hopkinson pressure bar[J]. International Journal of Impact Engineering, 1997, 19(4): 319-330.
[12] Chen W, Lu F, Zhou B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J]. Experimental Mechanics, 2000, 40(1): 1-6.
[13] Liu J F, Wang Z D, Hu S S. The SHPB experiment technology for low wave impedance porous materials[J]. Journal of Experimental Mechanics,1998, 13(2): 218-223 (in Chinese). 刘剑飞, 王正道, 胡时胜. 低阻抗多孔介质材料的SHPB实验技术[J]. 实验力学, 1998, 13(2): 218-223.
[14] Zhao H, Gary G. A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(7): 1185-1202.
[15] Song B, Chen W. One-dimensional dynamic compressive behavior of EPDM rubber[J]. Journal of Engineering Materials and Technology, 2003, 125(3): 294-301.
[16] Song B, Chen W, Lu W Y. Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam[J]. International Journal of Mechanical Sciences, 2007, 49(12): 1336-1343.
[17] Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1914, 213: 437-456.
[18] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B, 1949, 62(11): 676.
[19] Kolsky H. Stress waves in solids[M]. New York: Courier Dover Publications, 1963: 87.

文章导航

/