实验与数值模拟

高速飞行器空腔脉动压力主动控制与非线性数值模拟

  • 王一丁 ,
  • 郭亮 ,
  • 童明波 ,
  • 张杰
展开
  • 1. 南京航空航天大学 航空宇航学院, 南京 210016;
    2. 成都飞机设计研究所, 成都 610091;
    3. 北京银景科技有限公司, 北京 100107
王一丁 男,博士研究生。主要研究方向: 计算气动声学,噪声控制。 E-mail: wyding127@163.com;郭亮 男,博士研究生,工程师。主要研究方向: 飞机气动综合设计。 E-mail: brightgl@hotmail.com;童明波 男,博士,教授,博士生导师。主要研究方向: 飞行器总体设计。 Tel: 025-84896031 E-mail: tongw@nuaa.edu.cn;张杰 男,博士,工程师。主要研究方向: 计算气动声学。 E-mail: jerry.zhang@visionstrategy.com.cn

收稿日期: 2014-07-02

  修回日期: 2014-10-08

  网络出版日期: 2014-10-23

基金资助

航空科学基金(2012ZC52035)

Active control and nonlinear numerical simulation for oscillating pressure of high-speed aircraft cavity

  • WANG Yiding ,
  • Guo Liang ,
  • TONG Mingbo ,
  • Zhang Jie
Expand
  • 1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Chengdu Aircraft Design and Research Institute, Chengdu 610091, China;
    3. Beijing Yinjing Technology Co., Ltd., Beijing 100107, China

Received date: 2014-07-02

  Revised date: 2014-10-08

  Online published: 2014-10-23

Supported by

Aeronautical Science Foundation of China (2012ZC52035)

摘要

空腔脉动压力(空腔噪声)预测是高速飞行器内埋弹舱的关键技术之一。非线性噪声求解方法是近年来新提出的一种噪声求解方法,为研究该方法对空腔噪声的预测性能,将雷诺平均Navier-Stokes(RANS)方程与之相结合。首先,通过RANS求解空腔周围流场,得到初始湍流统计平均解,其中包含平均流场基本特征及强制设定的湍流脉动的统计描述。然后,采用非线性噪声求解方法重构噪声源并高精度模拟压力脉动的传播,计算了马赫数Ma=1.5和Ma=5条件下的空腔噪声。结果表明,噪声特性计算值与试验结果基本吻合,说明非线性噪声求解方法对于高速空腔流动噪声具有较好的预测能力。在此基础上,研究了马赫数Ma=1.5和Ma=5条件下在空腔前缘加入气帘喷流主动控制措施对噪声的抑制作用,并得出在超声速和高超声速条件下,气帘喷流对于空腔脉动压力都有较好的抑制作用。

本文引用格式

王一丁 , 郭亮 , 童明波 , 张杰 . 高速飞行器空腔脉动压力主动控制与非线性数值模拟[J]. 航空学报, 2015 , 36(1) : 213 -222 . DOI: 10.7527/S1000-6893.2014.0277

Abstract

Prediction of oscillating pressure is a key technology for the weapon bay of high-speed aircraft cavity. Nonlinear numerical simulation is proposed as a new method to analyze noise recently. In order to evaluate the prediction performance of cavity noise, nonlinear numerical simulation solver is combined with Reynolds-averaged Navier-Stokes(RANS) equation. Firstly, the flow field around cavity is solved by RANS, and the average solution of initial turbulent statistics is obtained which contains the basic characteristics of average flow field and statistics description of turbulence fluctuation. After that, noise source is refactored and the spreading of pressure fluctuation is simulated precisely by the nonlinear acoustics solution. According to the comparison of the cavity noise calculation and experimental results under Ma = 1.5 and Ma = 5, it indicates that nonlinear numerical solution is able to well predict cavity flow noise at high speed. Based on that, the contribution to noise suppression made by active control such as adding jet screen at the leading edge of cavity under Ma = 1.5 and Ma = 5 is investigated. It is found that jet screen is suitable for suppression of oscillating pressure under supersonic condition as well as in hypersonic state.

参考文献

[1] Wu J F, Luo X F, Fan Z L. Flow control method to improve cavity flow and store separation characteristic[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1840-1845 (in Chinese). 吴继飞, 罗新福, 范召林.内埋式弹舱流场特性及武器分离特性改进措施[J]. 航空学报, 2009, 30(10): 1840-1845.

[2] Feng Q, Cui X C. Study on integrated flow control for weapons bay of flying wing configuration aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 781-787 (in Chinese). 冯强, 崔晓春. 飞翼布局飞机武器舱综合流动控制技术研究[J]. 航空学报, 2012, 33(5): 781-787.

[3] Perng S W. Passive control of pressure oscillations in hypersonic cavity flow[D]. Austin: University of Texas at Austin, 1996.

[4] Barter J W. Prediction and passive control of fluct-uating pressure loads produced by shock-induced turbulent boundary layer separation[D]. Austin: University of Texas at Austin, 1995.

[5] Shaw L. Active control for cavity acoustics, A1AA-1998-2347[R].Reston: AIAA, 1998.

[6] Miehael J A.Control of cavity resonance through very high frequency forcing, AIAA-2000-1905[R]. Reston: AIAA, 2000.

[7] Smith B R, Welterlen T J, Maines B H, et al.Weapons bay acoustic suppression from rod spoilers,AIAA-2002-0662[R].Reston: AIAA, 2002.

[8] Alvi F S, Elavarasan R, Garg G, et al. Control of supersonic impinging jet using microjets, AIAA-2000-2236 [R]. Reston: AIAA, 2000.

[9] Bower W W, Kibens V, Cary A W, et al. High-frequency excitation active flow control for high-speed weapon release(HIFEX), AIAA-2004-2513[R]. Reston: AIAA, 2004.

[10] Tam C K W. Computational aeroacoustics:an overview of computational challenges and applications[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6): 547-567.

[11] Long S L, Nie H, Xue C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica,2012, 33(6): 1002-1013 (in Chinese). 龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6): 1002-1013.

[12] Hou Z X, Yi S H, Wang C Y. Numerical analysis of supersonic open cavity[J]. Journal of Propulsion Technology, 2001, 22(5): 400-403 (in Chinese). 侯中喜, 易仕和, 王承尧. 超声速开式空腔流动的数值模拟[J]. 推进技术, 2001, 22(5): 400-403.

[13] Li X D, Liu J D, Gao J H. Numerical simulation of flow-induced oscillation and sound generation in a cavity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 599-604 (in Chinese). 李晓东, 刘靖东, 高军辉. 空腔流激振荡发声的数值模拟研究[J]. 力学学报, 2006, 38(5): 599-604.

[14] Batten P, Ribaldone E, Casella M, et al. Towards a generalized non-linear acoustics solver, AIAA-2004-3001[R]. Reston: AIAA, 2004

[15] Batten P,Goldberg U,Chakravarthy S. Reconstructed sub-grid methods for acoustics predictions at all Reynolds Numbers, AIAA-2002-2511[R]. Reston: AIAA, 2002.

[16] Silva C R I, Almeida O, Batten P. Investigation of an axi-symmetric subsonic turbulent jet using computational aeroacoustics tools,AIAA-2007-3656[R]. Reston: AIAA, 2007.

[17] Aflalo B S, Simoes L G C, Silva R G, et al. Comparative analysis of turbulence models for slat noise source calculations employing unstructured meshes, AIAA-2010-3838 [R]. Reston: AIAA, 2010.

[18] Rossiter J E.Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, RAE Technical Report No. 64037[R]. Hampshire: Royal Aircraft Establishment, 1964.

[19] Unalmis O H, Clemens N T, Dolling D S. Experimental study of shear-layer/acoustics coupling in Mach 5 cavity flow[J]. AIAA Journal, 2001, 39(2): 242-252.

文章导航

/