一种改进型松耦合方法在机翼摇滚计算中的应用
收稿日期: 2014-07-18
修回日期: 2014-08-08
网络出版日期: 2014-10-21
基金资助
国家自然科学基金 (11272033); 中央高校基本科研业务费专项资金
A modified loosely-coupled algorithm for calculation of wing rock
Received date: 2014-07-18
Revised date: 2014-08-08
Online published: 2014-10-21
Supported by
National Natural Science Foundation of China (11272033); the Fundamental Research Funds for the Central Universities
提出了一种简单实用的松耦合机翼摇滚计算方法,该方法采用隐式和显式公式相结合来计算刚体动力学方程并升级网格,使计算结果的收敛性和稳定性随时间步长的增大更好,可以在较大的时间步长下得到合理的计算结果。该方法是在隐式和显式的松耦合方法基础上得到的,通过分析机翼摇滚计算中松耦合方法时间精度低的原因,发现如果基于隐式方法计算角速度和角度,由于计算力矩时网格位置滞后,导致气动力相对于运动滞后,时间步长较大时计算的机翼摇滚振幅偏大;而如果基于显式方法计算角速度和角度,计算力矩时网格位置超前,导致计算的机翼摇滚振幅偏小。通过计算80°后掠三角翼的机翼摇滚,证明了改进型松耦合方法的有效性。
李伟 , 马宝峰 . 一种改进型松耦合方法在机翼摇滚计算中的应用[J]. 航空学报, 2015 , 36(6) : 1805 -1813 . DOI: 10.7527/S1000-6893.2014.0291
A modified loosely-coupled algorithm is provided for numerical simulation of wing rock. The algorithm combines the explicit and implicit formulas to calculate the dynamics equations and to update girds, improving the temporal convergence and numerical stability, being able to obtain reasonable results with larger time steps. Through analyzing the conventional loosely-coupled algorithm, it is found that if the implicit methods are used to calculate the angular rate and angle, the aerodynamic moments have a large time-lag than motion due to the time-lag of grid. Therefore, the amplitudes of wing rock obtained are larger than experimental values at larger time steps. By contrast, the amplitudes using explicit methods are smaller at larger time steps. By calculating wing rock of swept delta wing being 80°, the feasibility of the modified loosely-coupled method is verified.
Key words: slender wing; wing rock; numerical simulation; fluid-solid coupling; loosely-coupled
[1] Katz J. Wing/vortex interactions and wing rock[J]. Progress in Aerospace Sciences, 1999, 35(7): 727-750.
[2] Nelson R C, Pelletier A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Science, 2003, 39(2): 185-248.
[3] Nguyen L E, Yin L P, Chambers J R. Self-induced wing rock of slender delta wings, AIAA-1981-1883[R]. Reston: AIAA, 1981.
[4] Arena A S. An experimental and computational investigation of slender wings undergoing wing rock[D]. Notre Dame: Universtiy of Notre Dame, 1992.
[5] Arena A S, Nelson R C. Experimental investigation on limit cycle wing rock of slender wings[J]. Journal of Aircraft, 1994, 31(5): 1148-1155.
[6] Gresham N T, Wang Z, Gursul I. Vortex dynamics of free-to-roll slender and nonslender delta wings[J]. Journal of Aircraft, 2009, 47(1): 292-302.
[7] Wei L K, Ma B F. Wing rock induced by a hemisphere-cylinder forebody[J]. Journal of Aircraft, 2014, 51(2): 606-613.
[8] Zhang H X, Liu W, Xie Y F, et al. On the rocking motion and its dynamic evolution of a swept delta wing[J]. Acta Aerodynamica Sinica, 2006, 24(1): 5-9 (in Chinese). 张涵信, 刘伟, 谢昱飞, 等. 后掠三角翼的摇滚及其动态演化问题[J]. 空气动力学学报, 2006, 24(1): 5-9.
[9] Liu W, Zhang H X, Zhao H Y. Numerical simulation and physical characteristics analysis for slender wing rock[J]. Journal of Aircraft, 2006, 43(3): 858-861.
[10] Yang Y J, Cui E J, Zhou W J. Numerical research on rock characteristic about a slender wing[J]. Acta Aerodynamica Sinica, 2007, 25(1): 34-44 (in Chinese). 杨云军, 崔尓杰, 周伟江. 细长三角翼摇滚运动数值研究[J]. 空气动力学学报, 2007, 25(1): 34-44.
[11] Ma B F, Deng X Y. Stability of a vortex pair coupled with a freely rolling slender wing[C]//The 13th Symposium of Separated Flow, Vortex & Flow Control. Nanjing: Chinese Aerodynamics Research Society, 2010 (in Chinese). 马宝峰, 邓学蓥. 细长翼/前缘涡耦合系统的稳定性研究[C]//第十三届全国分离流、旋涡和流动控制会议论文集. 南京: 中国空气动力学会, 2010.
[12] Farhat C, Zee K G V, Geuzanie P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17-18): 1973-2001.
[13] An X M, Xu M, Chen S L. Analysis for second order time accurate CFD/CSD coupled algorithms[J]. Acta Aerodynamica Sinica, 2009, 27(5): 547-552 (in Chinese). 安效民, 徐敏, 陈士橹. 二阶时间精度的CFD/CSD耦合算法研究[J]. 空气动力学学报, 2009, 27(5): 547-552.
[14] Yang Y J, Zhou W J, Cui E J. Influence of coupling time accuracy on simulation of aircraft free movement[J]. Chinese Journal of Computational Physics, 2007, 24(1): 42-49 (in Chinese). 杨云军, 周伟江, 崔尓杰. 耦合时间精度对模拟飞行器自由运动特性的影响[J]. 计算物理, 2007, 24(1): 42-49.
[15] Yan Q J. Numerical analysis[M]. 3rd ed. Beijing: Beihang University Press, 2006: 289-295 (in Chinese). 颜庆津. 数值分析[M]. 3版. 北京: 北京航空航天大学出版社, 2006: 289-295.
/
〈 |
|
〉 |