一种基于盲同态解卷积的SAR成像自聚焦算法
收稿日期: 2014-06-23
修回日期: 2014-10-05
网络出版日期: 2014-10-21
基金资助
国家自然科学基金(61471283, 61303035)
An image autofocus algorithm using blind homomorphic deconvolution for synthetic aperture radar
Received date: 2014-06-23
Revised date: 2014-10-05
Online published: 2014-10-21
Supported by
National Nature Science Foundation of China (61471283, 61303035)
针对大气扰动及飞行平台不稳引起机载合成孔径雷达(SAR)图像散焦的问题,提出了一种新的自聚焦算法来估算运动误差。该算法是基于运动误差函数及场景散射函数平滑特性的差异来进行估计的,利用复对数变换将图像的幅度与相位信息分离,进而分别对相位及幅度信息进行处理。运动误差通常为慢变函数,而场景的散射信息具有某种随机特性。因此,经过复对数变换后,运动误差及散射信息可以通过滤波器进行分离,将相位中的随机噪声去除,从而保留了慢变的运动误差函数。为了去除噪声信息,需要建立一个平滑滤波器,利用Daubechies小波的尺度函数构造Riesz基向量,从而建立了正交子空间,通过所建立信号子空间及噪声子空间组建平滑滤波器,最终可以获得准确的运动误差。在实验部分,分别利用仿真数据及实测数据对本文方法进行验证,最终结果分析表明该方法具有很高的估计精度及执行效率。
邵鹏 , 李亚超 , 李学仕 , 邢孟道 . 一种基于盲同态解卷积的SAR成像自聚焦算法[J]. 航空学报, 2015 , 36(5) : 1606 -1616 . DOI: 10.7527/S1000-6893.2014.0274
Synthetic aperture radar (SAR) image suffers from the deterioration due to the unknown phase error caused by unstable platform and atmosphere perturbation. A novel autofocus algorithm is presented in this paper to obtain phase error. The proposed algorithm is put forward based on the differences of smoothness properties for log-spectrum of motion error and image reflectivity. The differences could be employed to discriminate the motion error and reflectivity function. The log-spectrum of motion error is a slow-varying function, while the log-spectrum of image reflectivity owns some statistical properties which is similar to jagged function distribution. Then, motion error can be separated by applying a proper smoothing filter to the log-spectrum of blurred image. We set up a model that the log-amplitude spectrum and phase of spectrum for blurred image are processed through different smoothing filter functions. The log-spectrum of amplitude is recovered by current de-noising algorithms and phase is restored through phase-unwrapping and smoothing filter. It is demonstrated that the amplitude and phase of motion error can be reliably restored from the blurred SAR image and refiectivity function of image can be accurately reconstructed. In this paper, Riesz basis is constructed by scaling function of Daubechies wavelet function. An orthogonal subspace is built. Finally, a smoothing filter is applied to the derivative of compressed data. Then, motion error can be obtained. In order to demonstrate the performance of the proposed method, simulation data and real data are processed to verify the proposed algorithm. The analysis illustrates that this algorithm could obtain accurate motion error and possesses higher implementation efficiency.
[1] Carrara W G, Goodman R S, Majewski R M. Spotlight synthetic aperture radar signal processing algorithms [M]. Boston, MA: Artech House, 1995: 12-46.
[2] Wahl D E, Ghiglia D C, Eichel P H, et al. Phase gradient autofocus—A robust tool for high resolution SAR phase correction [J]. IEEE Transactions on Aerospace Electronic Systems, 1994, 30 (7): 827-835.
[3] Ye W, Yeo T S, Bao Z, Weighted least-squares estimation of phase errors for SAR/SAR autofocus [J]. IEEE Transactions Geoscience Remote Sensing, 1999, 37(5): 2487-2494.
[4] Zhang L, Qiao Z J, Xing M D. A robust motion compensation approach for UAV SAR imagery [J]. IEEE Transactions on Geoscience Remote Sensing, 2012, 50(7): 1-17.
[5] Chan H L, Yeo T S, Noniterative quality phase-gradient autofocus (QPGA) algorithm for spotlight SAR imagery [J]. IEEE Transactions on Geoscience Remote Sensing, 1998, 36(5): 1531-1539.
[6] Xi L, Sui L G, Ni J L. Autofocusing of ISAR images based on entropy minimization [J]. IEEE Transactions on Aerospace Electronic Systems, 1999, 35(4): 1240-1252.
[7] Berizzi F, Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization [J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1185-1191.
[8] Morrison R L, Do M N, Munson D C. MCA: A multichannel approach to SAR autofocus [J]. IEEE Transactions on Image Processing, 2009, 18(4): 840-852.
[9] Morrison R L, Do M N, Munson D C. SAR image autofocus by sharpness optimization: A theoretical study [J]. IEEE Transactions on Image Processing, 2007, 16(9): 2309-2321.
[10] Morrison R L, Do M N. A multichannel approach to metric-based SAR autofocus[C]//Proceedings of the 2005 International Conference on Image Processing. Piscataway,NJ: IEEE Press, 2005: 1070-1073.
[11] Strand J, Taxt T. Two-dimensional phase unwrapping using robust derivative estimation and adaptive integration [J]. IEEE Transactions on Image Processing, 2002, 11(10): 1192-1200.
[12] Oppenheim A V, Schafer R W. Homomorphic analysis of speech [J]. IEEE Transactions on Audio Electroacoust, 1968, 16(2): 221-226.
[13] Michailovich O V, Adam D. A novel approach to the 2-D blind deconvolution problem in medical ultrasound [J]. IEEE Transactions on Medical Imaging, 2005, 24(1): 86-104.
[14] Tonazzini A, Gerace I, Martinelli F. Multichannel blind separation and deconvolution of images for document analysis [J]. IEEE Transactions on Image Processing, 2010, 19(4): 912-925.
[15] Michailovich O V, Tannenbaum A. On approximation of smooth functions from samples of partial derivatives with application to phase unwrapping [J]. Signal Processing, 2008, 88: 358-374.
[16] Pei S C, Lin H S. Two-dimensional partially differential cepstrum and its applications on filter stabilization and phase unwrapping [J]. IEEE Transactions on Circuits and Systems, 2011, 58(4): 737-745.
/
〈 |
|
〉 |