发动机

吸气式高超声速飞行器机体推进一体化技术研究进展

  • 吴颖川 ,
  • 贺元元 ,
  • 贺伟 ,
  • 乐嘉陵
展开
  • 中国空气动力研究与发展中心 超高速空气动力研究所 高超声速冲压发动机技术重点实验室, 绵阳 621000
吴颖川 男,博士,研究员。主要研究方向: 高超声速空气动力学。 Tel: 0816-2463303 E-mail: wyclwx2007@126.com;贺元元 女,博士,副研究员。主要研究方向: 高超声速空气动力学。 Tel: 0816-2467307 E-mail: hyy63713@126.com;贺伟 男,博士,研究员。主要研究方向: 高超声速空气动力学。 Tel: 0816-2463303 E-mail: hewei@cardc.cn;乐嘉陵 男,中国工程院院士。主要研究方向: 高超声速空气动力学。 Tel: 0816-2466381 E-mail: lejl123@cardc.cn

收稿日期: 2014-07-25

  修回日期: 2014-10-13

  网络出版日期: 2014-10-14

基金资助

国家自然科学基金(90716017, 90916012, 91216303)

Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle

  • WU Yingchuan ,
  • HE Yuanyuan ,
  • HE Wei ,
  • LE Jialing
Expand
  • Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2014-07-25

  Revised date: 2014-10-13

  Online published: 2014-10-14

Supported by

National Natural Science Foundation of China (90716017, 90916012, 91216303)

摘要

吸气式高超声速一体化飞行器最显著的特点是子系统之间的耦合较其他类型飞行器更加强烈,这使得其设计具有挑战性。所有的子系统之间部件相互干涉,包括:气动、推进、控制、结构、装载和热防护等,特别是机体与超燃冲压发动机之间的耦合最为突出。飞行器的前体和后体下壁面既是主要的气动型面,又是超燃冲压发动机进气道外压缩型面和尾喷管的膨胀型面,在产生推力的同时也产生升力和俯仰力矩。机体与发动机的强耦合作用对飞行器的推力、升力、阻力、俯仰力矩、气动加热、机身冷却、稳定性和控制特性有直接的影响。本文介绍了国内外机体推进一体化技术的研究进展,重点介绍了中国空气动力研究与发展中心(CARDC)的相关研究工作,包括:密切曲锥曲面乘波进气道和基于双激波轴对称基准流场内转式进气道设计方法、独创的大尺度脉冲式燃烧加热风洞一体化飞行器带动力试验技术和高超声速内外流耦合数值模拟技术等。对高速飞行中激波边界层相互干扰、流动分离机理、可压缩湍流转捩及其控制、超燃冲压发动机燃烧流动机理等相关基础问题也进行了研究,强调了对高效高精度计算方法的迫切需求。

本文引用格式

吴颖川 , 贺元元 , 贺伟 , 乐嘉陵 . 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015 , 36(1) : 245 -260 . DOI: 10.7527/S1000-6893.2014.0238

Abstract

Air-breathing hypersonic vehicle is highly integrated making its design challenging. All vehicle parts and functions interact including aerodynamics, propulsion, control, structure, tank and thermal protection, especially for airframe and scramjet engine coupling. The lower wall of the aircraft forebody and afterbody is either compression part of the engine inlet or expansion part of the engine nozzle and it produces lift and pitching moment as well as thrust. The strong coupling of the airframe and engine has direct influence to the thrust, lift, drag, pitching moment, aerodynamic heating, airframe cooling, stability and control characteristics of the vehicle. The research developments of airframe-propulsion integration technology are introduced and the related works of China Aerodynamics Research & Development Center (CARDC) are emphasized. These works included osculating curved cone waverider inlet design, double shockwave axissymetric flow field-based inward turning inlet design, airframe-propulsion integrated vehicle tests in pulsed combustion heated hypersonic high-temperature wind tunnels and hypersonic large-scale parallel numerical simulation platform (AHL3D). The related fundamental researches of hypersonic shock-boundary layer interaction, compressible turbulent transition of flow separation mechanism and its control, scramjet combustion study on flow mechanism and other related basic issues are introduced. The urgent need of efficient high-precision calculation method is emphasized.

参考文献

[1] Tank M H. National Aero-Space Plane (NASP) Program, N1991-28214[R]. Washington, D. C.: NASA Space Transportation Propulsion Technology Symposium, 1991, 2: 383-407.

[2] Foelsche R O, Leylegian J C, Betti A A. Progress on the development of a free flight atmospheric scramjet test technique, AIAA-2005-3297[R]. Reston: AIAA, 2005.

[3] Peebles C. Road to Mach 10: lessons learned from the X-43A flight research program[M]. Reston: Library of Flight Series, AIAA, 2008: 36-78.

[4] Shelly F, Charles M, Kenneth R, et al. Hyper-X Mach 7 scramjet design, ground test and flight results, AIAA-2005-3322[R]. Reston: AIAA, 2005.

[5] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstration program, AIAA-2008-2540[R]. Reston: AIAA, 2008.

[6] Walker S H, Sherk J, Shell D. The DARPA/AF Falcon Program: the hypersonic technology vehicle #2 (HTV-2) flight demonstration phase, AIAA-2008-2539[R]. Reston: AIAA, 2008.

[7] Liu T L. Hypersonic technology flight test program in Russia (I)[J]. Aerodynamic Missile Journal, 2000(4): 23-30 (in Chinese). 刘桐林. 俄罗斯高超声速技术飞行试验计划(一)[J]. 飞航导弹, 2000(4): 23-30.

[8] Duveau P, Hallard R, Novelli P, et al. Aerodynamic performance analysis of the hypersonic airbreathing vehicle Japhar[C]//ISABE 1999. Florence: ISABE Congress, 1999.

[9] Neuenhahn T, Olivier H. Development of the HyShot stability demonstrator, AIAA-2006-2960[R]. Reston: AIAA, 2006.

[10] Steelant J. Sustained hypersonic flight in Europe: technology drivers for LAPCAT II, AIAA-2009-7240[R]. Reston: AIAA, 2009.

[11] Chen Y Y, Ye L, Su X X. Current situation of air-breathing hypersonic vehicle abroad[J]. Aerodynamic Missile Journal, 2008(12): 25-32 (in Chinese). 陈英硕, 叶蕾, 苏鑫鑫. 国外吸气式高超声速飞行器发展现状[J].飞航导弹, 2008(12): 25-32.

[12] Rogers R C, Capriotti D P, Guy R W. Experimental supersonic combustion research at NASA langley, AIAA-1998-2506[R]. Reston: AIAA, 1998.

[13] Engelund W C, Holland S D, Cockrell C E, Jr. Aerodynamic database development for the hyper-X airframe-integrated scramjet propulsion experiments[J]. Journal of Spacecraft and Rocket, 2001, 38(6): 803-810.

[14] Yi J, Xiao H, Shang X S. Aerodynamic performance research of two integrated hypersonic configurations[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3): 305-311 (in Chinese). 易军, 肖洪, 商旭升. 两种高超声速一体化构型的气动性能对比分析[J]. 航空工程进展, 2011, 2(3): 305-311.

[15] Zhang H Y, Cheng K M, Wu Y Z. A study on the flowpath and the aerodynamic characteristic of a hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(1): 119-123 (in Chinese). 张红英, 程克明, 伍贻兆. 某高超飞行器流道冷流特征及气动力特性研究[J]. 空气动力学学报, 2009, 27(1): 119-123.

[16] Fan X Q, Li H, Yi S H, et al. Experiment of aerodynamic performance for hypersonicvehicle integrated with sidewall compression inlet[J]. Journal of Propulsion Technology, 2004, 25(6): 499-502 (in Chinese). 范晓樯, 李桦, 易仕和, 等. 侧压式进气道与飞行器机体气动一体化设计及实验[J]. 推进技术, 2004, 25(6): 499-502.

[17] Jin L, Liu J, Luo S B, et al. Aerodynamic characterization of an integrated hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 42-45(in Chinese). 金亮, 柳军, 罗世彬, 等. 高超声速一体化飞行器冷流状态气动特性研究[J]. 实验流体力学, 2010, 24(1): 42-45.

[18] Jones K D, Sobieczky H, Seebass A R, et al. Waverider design for generalized shock geometries[J]. Spacecraft and Rockets, 1995, 32(6): 957-963.

[19] Sobieczky H, Zores B, Wang Z, et al. High speed flow design using osculating axisymmetric flows[C]//PICAST'3. Beijing: Aviation Industry Press, 1997: 1-5.

[20] He X Z, Le J L, Wu Y C. Design of a curved cone derived waverider forebody, AIAA-2009-7423[R]. Reston: AIAA, 2009.

[21] He X Z, Ni H L. Osculating curved cone (OCC) waverider: design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese). 贺旭照, 倪鸿礼. 密切曲面锥乘波体——设计方法和性能分析[J]. 力学学报, 2011, 43(6): 1077-1082.

[22] Wu Y C, He Y Y, Yu A Y, et al. Aerodynamic layout of spanwise truncated curved waverider compression inlet[J]. Journal of Aerospace Power, 2013, 28(7): 1570-1575 (in Chinese). 吴颖川, 贺元元, 余安远, 等. 展向截断曲面乘波压缩前体进气道气动布局研究[J]. 航空动力学报, 2013, 28(7): 1570-1575.

[23] Wu Y C, He Y Y, He W, et al. The design of osculating curved cone waverider based hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2014, 32(1): 8-13 (in Chinese). 吴颖川, 贺元元, 贺伟, 等. 基于密切曲锥的乘波构型一体化飞行器设计方法研究[J]. 空气动力学学报, 2014, 32(1): 8-13.

[24] Mao X B. 2.4 m impulse combustion wind tunnel[EB/OL]. (2012-7-12)[2014-6-15]. http://www.cardc.cn/html/Facility/cgs/Cumbustion/44.html. 毛雄兵. 2.4 m脉冲燃烧风洞[EB/OL]. (2012-7-12 )[2014-6-15]. http://www.cardc.cn/html/Facility/cgs/Cumbustion/44.html.

[25] He Y Y, Le J L, Ni H L. Numerical and experimental study of airbreathing hypersonic airframe/propulsion integrative vehicle[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 29-34 (in Chinese). 贺元元, 乐嘉陵, 倪鸿礼. 吸气式高超声速机体/推进一体化飞行器数值和试验研究[J]. 实验流体力学, 2007, 21(2): 29-34.

[26] Wang L, Xing J W, Zheng Z H, et al. One-dimensional evaluation of the scramjet flowpath performance[J]. Journal of Propulsion Technology, 2008, 29(6): 641-646 (in Chinese). 王兰, 邢建文, 郑忠华, 等. 超燃发动机内流性能的一维评估[J]. 推进技术, 2008, 29(6): 641-646.

[27] Berry S, Daryabeigi K, Wurster K, et al. Boundary layer transition on X-43A, AIAA-2008-3736[R]. Reston: AIAA, 2008.

[28] Berry S, Auslender A H, Dilley A D, et al. Hypersonic boundary-layer trip development for hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 853-864.

[29] Schneider S P. Effects of roughness on hypersonic boundary-layer transition, AIAA-2007-0305[R]. Reston: AIAA, 2007.

[30] Choudhari M, Li F, Edwards J. Stability analysis of roughness array wake in a high-speed boundary layer, AIAA-2009-0170[R]. Reston: AIAA, 2009.

[31] Zhao H Y, Zhou Y, Ni H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 1-6 (in Chinese). 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强制转捩试验[J]. 实验流体力学, 2012, 26(1): 1-6.

[32] Xiao Z X, Zhang M H, Xiao L H, et al. Studies of roughness-induced transition using three-equation k-ω-γ transition/turbulence model, AIAA-2013-3111[R]. Reston: AIAA, 2013.

[33] Le J L, Liu W X, He W, et al. Impulse combustion wind tunnel and its application in rocket and scramjet research[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 1-10 (in Chinese). 乐嘉陵, 刘伟雄, 贺伟, 等. 脉冲燃烧风洞及其在火箭和超燃发动机研究中的应用[J]. 实验流体力学, 2005, 19(1): 1-10.

[34] Yang S H, Le J L. Numerical simulation of liquid fuel atomization in supersonic cross flow[J]. Journal of Propulsion Technology, 2008, 29(5): 519-522 (in Chinese). 杨顺华, 乐嘉陵. 超声速气流中液体燃料雾化数值模拟[J]. 推进技术, 2008, 29(5): 519-522.

[35] Le J L, He W, Yang S H, et al. Investigation of ignition characteristics for kerosene fueled scramjet, ISABE-2009-1322[R]. Montreal: The International Society Engines of Airbreathing, 2009.

[36] The National Natural Science Fund Committee Office. The annual directory of the major research plan 2014 of "Basic Research of Turbulent Combustion for the Engine" [R]. Beijing: The National Natural Science Fund Committee Office, 2014 (in Chinese). 国家自然科学基金委员会办公室. "面向发动机的湍流燃烧基础研究"重大研究计划2014年度项目指南[R]. 北京: 国家自然科学基金委员会办公室, 2014.

文章导航

/