基于区实混合序列相似度的异步不等速率航迹关联算法
收稿日期: 2014-05-21
修回日期: 2014-10-08
网络出版日期: 2014-10-14
基金资助
国家自然科学基金(61032001); 教育部新世纪优秀人才支持计划(NCET-11-0872)
Asynchronous track-to-track association algorithm based on similarity degree of interval-real sequence
Received date: 2014-05-21
Revised date: 2014-10-08
Online published: 2014-10-14
Supported by
National Natural Science Foundation of China(61032001); Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-11-0872)
在分布式多目标跟踪系统中,由于局部传感器开机时间、采样频率以及通信延迟不同等原因,导致来自各传感器的局部航迹往往是异步不等速率的。目前一般的方法是先进行时域配准再进行航迹关联,但是在同步化的过程中,航迹估计值的误差会发生传播,影响航迹关联的性能。针对此问题,提出了一种基于区实混合序列相似度的异步不等速率航迹关联算法。算法首先通过区间数-实数混合序列变换(IRST)得到等长度的航迹行为序列,然后定义一种新的序列差异信息度量,得到混合序列的相似度,以此进行航迹关联判定。仿真实验表明,该算法可以有效地解决异步不等速率航迹关联问题,并且通信延迟和数据乱序对算法性能的影响不明显。
衣晓 , 韩健越 , 张怀巍 , 关欣 . 基于区实混合序列相似度的异步不等速率航迹关联算法[J]. 航空学报, 2015 , 36(4) : 1212 -1220 . DOI: 10.7527/S1000-6893.2014.0275
Because local sensors in the distributed multi-target tracking system usually start working at different time and provide tracks at different rates with different communication delays, the local tracks from different sensors are usually asynchronous. The current solution is to synchronize the tracks before track association. But the estimation error spreads when synchronizing, which affects the performance of correlation. To solve the problem, an asynchronous track-to-track association method based on similarity degree of interval-real sequence is presented. Firstly, the track sequences are transformed to same-length sequences which contain interval data and real data by interval-real sequence transform (IRST). Then a new difference measurement for the sequences is defined, by which the correlation degree can be calculated and the track association conclusion be made. Simulation results show that the presented method can effectively solve the asynchronous track-to-track association problem, and its performance is seldom affected in the case of different communication delays and disorderly data.
[1] Tian X, Bar-Shalom Y. Track-to-track fusion configurations and association in a sliding widow[J]. Journal of Advances in Information Fusion, 2009,4(2): 146-164.
[2] Rafati A, Moshiri B, Rezaei J. A new algorithm for general asynchronous sensor bias estimation in multisensor multi-target systems[C]// Proceedings of 10th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2007: 296-301.
[3] Qi Y Q, Jing Z L, Hu S Q. General solution for asynchronous sensors bias estimation[C]// Proceedings of 11th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2008: 258-264.
[4] He Y, Wang G H, Guan X, et al. Information fusion theory with applications[M]. Beijing: Publishing House of Electronics Industry, 2010: 10-12 (in Chinese). 何友, 王国宏, 关欣, 等. 信息融合理论及应用[M]. 北京: 电子工业出版社, 2010: 10-12.
[5] Pan Q, Liang Y, Yang F, et al. Modern target tracking and information fusion[M]. Beijing: National Defense Industry Press, 2009: 65-77 (in Chinese). 潘泉, 梁彦, 杨峰, 等. 现代目标跟踪与信息融合[M]. 北京: 国防工业出版社, 2009: 65-77.
[6] Zhu H Y, Han C Z, Han H. Asynchronous track-to-track association method in distributed multi-sensor information fusion system[J]. Control Theory and Applications, 2004, 21(3): 453-456 (in Chinese). 朱洪艳, 韩崇昭, 韩红. 分布式多传感信息融合系统的异步航迹关联方法[J]. 控制理论与应用, 2004, 21(3): 453-456.
[7] Cheng Z, Li H, Zhang A. Algorithmvfor multi-sensor asynchronous track association based on pseudo measurement[J]. Chinese Journal of Sensors and Actuators, 2006, 19(3): 878-881 (in Chinese). 程琤, 李辉, 张安. 基于伪点迹的多传感器异步航迹关联算法[J]. 传感技术学报, 2006, 19(3): 878-881.
[8] Tian X, Bar-Shalom Y. Sliding window test vs. single time test for track-to-track association[C]// Proceedings of 11th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2008: 1-8.
[9] Guo Y H, Yuan C. A mutation ant colony algorithm for the asynchronous track correlation[J]. Acta Electronica Sinica, 2012, 40(11): 2200-2205 (in Chinese). 郭蕴华, 袁成. 一种异步航迹关联的变异蚁群算法[J]. 电子学报, 2012, 40(11): 2200-2205.
[10] Liu W F, Wen C L. A track association algorithm based on the OSPA distance[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1083-1092 (in Chinese). 刘伟峰, 文成林. 基于OSPA距离的航迹关联方法[J]. 航空学报, 2012, 33(6): 1083-1092.
[11] Guan X, He Y, Yi X. Grey track-to-track correlation algorithm for distributed multi-target tracking system[J]. Signal Processing, 2006, 86(11): 3448-3455.
[12] Yi X, Zhang H W, Cao X Y, et al. A track association algorithm for distributed multi-target system based on gray numbers[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2), 352-360 (in Chinese). 衣晓, 张怀巍, 曹昕莹, 等. 基于区间灰数的分布式多目标航迹关联算法[J]. 航空学报, 2013, 34(2), 352-360.
[13] Deng J L. Grey system theory[M]. Wuhan: Huazhong University of Science and Technology Press, 2002: 158-161 (in Chinese). 邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002: 158-161.
[14] Liu S F, Dang Y G, Fang Z G, et al. Grey system theory and application[M]. Beijing: Science Press, 2005: 37-39 (in Chinese). 刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2005: 37-39.
[15] Li L, He F, Huang K D. Asynchronous track fusion based Out-of-Sequence-Measurement algorithm[J]. Journal of Xi'an Jiaotong University, 2008, 42(4): 458-461 (in Chinese). 李林, 何芳, 黄柯棣. 基于异步航迹融合的乱序数据处理算法[J]. 西安交通大学学报, 2008, 42(4): 458-461.
/
〈 | 〉 |