流体力学与飞行力学

基于LADRC的无人直升机轨迹跟踪

  • 吴超 ,
  • 王浩文 ,
  • 张玉文 ,
  • 谭剑锋 ,
  • 倪先平
展开
  • 1. 南京航空航天大学 直升机旋翼动力学重点实验室, 南京 210016;
    2. 清华大学 航天航空学院, 北京 100084;
    3. 南京工业大学 机械与动力工程学院, 南京 210086
吴超 男,博士研究生。主要研究方向:直升机飞行力学,直升机仿真与控制。E-mail:wuchao_nuaa@163.com;王浩文 男,教授,博士生导师。主要研究方向:直升机动力学,直升机结构强度及振动载荷分析。Tel:010-62792661 E-mail:bobwang@tsinghua.edu.cn;张玉文 男,博士研究生。主要研究方向:飞行器设计。E-mail:great.mountain@qq.com;谭剑锋 男,讲师。主要研究方向:直升机旋翼空气动力学,结构动力学及风力机空气动力学。E-mail:windtam2003@gmail.com;倪先平 男,教授,博士生导师。主要研究方向:飞行器总体设计研究。E-mail:nixianp@sohu.com

收稿日期: 2014-06-19

  修回日期: 2014-09-23

  网络出版日期: 2014-10-09

基金资助

江苏高校优势学科建设工程资助项目(PAPD)

LADRC-based trajectory tracking for unmanned helicopter

  • WU Chao ,
  • WANG Haowen ,
  • ZHANG Yuwen ,
  • TAN Jianfeng ,
  • NI Xianping
Expand
  • 1. Science and Technology on Rotorcraft Aeromechanics Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. School of Aerospace, Tsinghua University, Beijing 100084, China;
    3. School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210086, China

Received date: 2014-06-19

  Revised date: 2014-09-23

  Online published: 2014-10-09

Supported by

A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

摘要

无人直升机轨迹控制系统是对多输入/多输出强耦合非线性系统进行解耦控制的系统。为解决无人直升机轨迹控制效果依赖于直升机物理参数的测量和辨识精度以及外部扰动大小问题,提出了一种基于线性自抗扰控制(LADRC)的多回路无人直升机轨迹控制系统。首先建立无人直升机X-Cell的飞行动力学模型,并引入风切变、大气紊流和突风模型以更加准确模拟真实飞行环境;然后对X-Cell进行配平计算以验证动力学模型和配平算法的准确性,并选取一组配平值作为轨迹控制仿真的初始状态和操纵量;随后根据被控量的动力学方程阶次选取对应的一阶和二阶LADRC基本控制器,并结合时间尺度原理,自内向外依次构建无人直升机的姿态、速度和位置控制回路,将三回路串联从而建立了无人直升机轨迹控制系统;而后进行了稳定性分析,特征根计算结果表明轨迹控制系统镇定了X-Cell开环系统不稳定的动态特性;最后将该控制系统应用于各种扰动下直升机轨迹跟踪仿真,结果表明本文无人直升机轨迹控制系统能很好地实现带爬升率的"8"字形轨迹跟踪,且相比于基于比例积分和微分(PID)控制的轨迹控制系统,该控制系统具有更优的鲁棒性和抗扰性。

本文引用格式

吴超 , 王浩文 , 张玉文 , 谭剑锋 , 倪先平 . 基于LADRC的无人直升机轨迹跟踪[J]. 航空学报, 2015 , 36(2) : 473 -483 . DOI: 10.7527/S1000-6893.2014.0270

Abstract

Trajectory tracking control system is used for decoupling the control unmanned helicopter, which is a nonlinear system with multi-input/multi-output and strong coupling effects. In order to avoid the dependence on accuracy of unmanned helicopter physical parameters measurement and identification and to reduce external disturbance impact, a multi-loop controller based on linear active disturbance rejection control (LADRC) is proposed. At first, the flight dynamics model is built for unmanned helicopter X-Cell. The atmospheric disturbance model, which contains wind shear, turbulence and gust model, is also set up for accurate simulation of real flight environment. Secondly, X-Cell is trimmed for verifying the accuracy of dynamic model and trim algorithm. A set of calculation values is selected as the initial state and input of the subsequent simulation. Then attitude, velocity and position control loop are built based on the first-order and second-order LADRC controllers which are selected according to system order. Combined with the time-scale separation principle, the whole trajectory control system is constructed from inner loop to outer loop. After that, the stability of the system is analyzed. The characteristic roots show that the whole system becomes stable with the trajectory controller. Finally, flight simulation experiments under various disturbance conditions are performed. The results show that the established control system can achieve a good climbing figure-eight trajectory tracking. Compared with controller based on proportion integration differentiation(PID), the controller based on LADRC has better robustness and capability of anti-disturbance.

参考文献

[1] Mettler B, Tischler M B, Kanade T, et al. Attitude control optimization for a small-scale unmanned helicopter[C]//AIAA Guidance, Navigation and Control Conference. Reston: AIAA, 2000: 40-59.

[2] Shim D H, Kim H J, Sastry S. Control system design for rotorcraft-based unmanned aerial vehicles using time-domain system identification[C]//Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage, Alaska: IEEE, 2000: 808-813.

[3] Budiyono A, Wibowo S S. Optimal tracking controller design for a small scale helicopter[J]. Journal of Bionic Engineering, 2007, 4(4): 271-280.

[4] Pei H L, Hu Y, Wu Y. Gain scheduling control of a small unmanned helicopter[C]//2007 IEEE International Conference on Control and Automation. Guangzhou: IEEE. 2007: 1168-1173.

[5] Castillo C L, Moreno W, Valavanis K P. Unmanned helicopter waypoint trajectory tracking using model predictive control[C]//Control & Automation, 2007. MED'07. Mediterranean Conference on. Athens:IEEE, 2007: 1-8.

[6] Huang Y, Xue W C, Yang X X. Active disturbance rejection control: methodology, theoretical analysis and applications[C]//Proceedings of the 29th Chinese Control Conference. Beijing:[s.n], 2010:29-31 (in Chinese). 黄一, 薛文超, 杨晓霞. 自抗扰控制: 思想、理论分析及运用[C]//第29届中国控制会议论文集. 北京:[出版者不详], 2010: 29-31.

[7] Enns D, Keviczky T. Dynamic inversion based flight control for autonomous RMAX helicopter[C]//American Control Conference. Minneapolis, M N: IEEE, 2006: 3916-3923.

[8] Ahmed B, Pota H R. Flight control of a Rotary wing UAV using adaptive backstepping[C]//Control and Automation, 2009. Christchurch: IEEE, 2009: 1780-1785.

[9] Kannan S K, Johnson E N. Adaptive trajectory based control for autonomous helicopters[C]//Proceedings of 21st Digital Avionics Systems Conference. Irvine: IEEE, 2002, 2: 8D1-1-8D1-12

[10] Wang B, Chen B M, Lee T H. An RPT approach to time-critical path following of an unmanned helicopter[C]//Control Conference (ASCC), 2011 8th Asian. Kaohsiung: IEEE, 2011: 211-216.

[11] Han J Q. Active disturbance rejection controller and its applications[J]. Control and Decision, 1998, 13(1): 19-23(in Chinese). 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.

[12] Gao Z Q. Active disturbance rejection control: a paradigm shift in feedback control system design[C]//American Control Conference. Minneapolis M N: IEEE, 2006: 7.

[13] Gavrilets V. Autonomous aerobatic maneuvering of min-iature helicopters[D].Cambridge: Massachusetts Institute of Technology, 2003.

[14] Wu C, Tan J F, Wang H W, et al. Optimal trim for helicopter based on GA and LM hybrid algorithm[J]. Flight Dynamics,2014,32(1): 5-19 (in Chinese). 吴超, 谭剑锋, 王浩文, 等. 基于GA/LM混合优化的直升机全机配平算法[J]. 飞行力学, 2014, 32(1): 5-19.

[15] Moorhouse D, Woodcock R. US Military Specification MIL-F-8785C[S]. Washington, D. C.: US Department of Defense, 1980:33-70.

[16] Velez C M, Agudelo A. Multirate control of an unmann-ed aerial vehicle[J]. WSEAS Transactions on Circuits and Systems, 2005, 4(11): 1628-1634.

[17] Velez C M. Mathematical model of a mini-helicopter robot ("Colibrí")[EB/OL] .(2013-08-12)[2014-09-1].http: //www.mathworks.com/matlabcentral/fileexchange/35879-mathematical-model-of-a-mini-helicopter-robot-colibr%C3%AD.

[18] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference. Minneapolis, Minnesota: IEEE, 2006, 6: 4989-4996.

[19] Naidu D S, Calise A J. Singular perturbations and time scales in guidance and control of aerospace systems: A survey[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6): 1057-1078.

文章导航

/