综述

火星进入减速器技术综述与展望

  • 李爽 ,
  • 江秀强
展开
  • 1. 南京航空航天大学 航天学院, 南京 210016;
    2. 南京航空航天大学 航天新技术实验室, 南京 210016
李爽 男,博士,教授。主要研究方向:航天器动力学与控制、深空探测和航天技术新概念。Tel:025-84896039 E-mail:lishuang@nuaa.edu.cn;江秀强 男,硕士研究生。主要研究方向:新型火星大气进入、下降与着陆的导航、制导与控制。Tel:025-84892805 E-mail:jiangxq@nuaa.edu.cn

收稿日期: 2014-04-15

  修回日期: 2014-10-08

  网络出版日期: 2014-10-09

基金资助

国家自然科学基金(61273051,60804057);国家"863"计划(2011AA7034057E,2012AA121601)

Review and prospect of decelerator technologies for Mars entry

  • LI Shuang ,
  • JIANG Xiuqiang
Expand
  • 1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Space New Technology Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-04-15

  Revised date: 2014-10-08

  Online published: 2014-10-09

Supported by

National Natural Science Foundation of China (61273051, 60804057); National High-tech Research and Development Program of China (2011AA7034057E, 2012AA121601)

摘要

随着火星着陆探测任务的不断推进,火星采样返回、载人登陆火星和火星基地等任务要求能将更大、更重的探测器着陆到火星表面,这就需要在火星大气进入阶段进行高效减速。基于以往成功的火星着陆探测任务,首先系统地回顾了火星进入段气动减速技术的发展历史;然后,结合火星进入过程的特点阐述了火星进入段减速设计的必要性及其面临的挑战;接着,系统地总结了充气式气动减速器、可展开式气动减速器和超声速反推减速器的系统构成和研究进展;最后,对这3种减速器技术的未来发展方向和亟待解决的关键问题进行了比较全面的分析和展望。

本文引用格式

李爽 , 江秀强 . 火星进入减速器技术综述与展望[J]. 航空学报, 2015 , 36(2) : 422 -440 . DOI: 10.7527/S1000-6893.2014.0279

Abstract

With the continuous progress of the Mars exploration, future Mars missions, such as Mars sample return, manned Mars missions, and Mars base, require the lander with a larger size and heavier mass to land on the surface of the Mars, thus inevitably need more efficient deceleration technologies for Mars atmospheric entry. The history of aerodynamic deceleration for Mars entry is reviewed first based on the past successful Mars landing missions in the paper. Then, the characteristics and challenges of decelerator technologies encountered during Mars entry are analyzed in detail. And the system configuration and state-of-art of the inflatable decelerator, deployable decelerator and supersonic retro-propulsion decelerator are summarized. Finally, a more comprehensive analysis and outlook for these three Mars entry decelerators are conducted.

参考文献

[1] Braun R D, Manning R M. Mars exploration entry, descent, and landing challenges[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 310-323.

[2] Perminov V G. The difficult road to Mars — a brief history of Mars exploration in the Soviet Union, NASA NP-1999-06-251-HQ[R]. Washington, D.C.: NASA, 1999.

[3] Fallon I I. Design and development of the main parachute for the Beagle 2 Mars lander, AIAA-2003-2153[R]. Reston: AIAA, 2003.

[4] Li S, Jiang X Q. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69: 40-57.

[5] Li S, Peng Y M, Lu Y P. Review and prospect of Mars EDL navigation guidance and control technologies[J]. Journal of Astronautics, 2010, 31(3): 621-627 (in Chinese). 李爽, 彭玉明, 陆宇平. 火星EDL导航、制导与控制技术综述与展望[J]. 宇航学报, 2010, 31(3): 621-627.

[6] Dwyer-Cianciolo A M, Davis J L, Komar D R, et al. Entry, descent and landing systems analysis study: Phase 1 report, NASA-TM-2010-216720[R]. Washington, D.C.: NASA, 2010.

[7] Dwyer-Cianciolo A M, Davis J L, Engelund W C, et al. Entry, descent and landing systems analysis study: Phase 2 report on exploration feed-forward systems, NASA/TM-2011-217055[R]. Washington, D.C.: NASA, 2011.

[8] Dwyer-Cianciolo A M, Zang T A, Sostaric R R, et al. Overview of the NASA entry, descent and landing systems analysis exploration feed-forward study, NASA NF1676L-12195[R]. Washington, D.C.: NASA, 2011.

[9] Way D W, Powell R W, Chen A, et al. Mars science laboratory: entry, descent, and landing system performance, NASA LF99-3989[R]. Washington, D.C.: NASA, 2006.

[10] Edquist K T, Dyakonov A A, Wright M J, et al. Aerothermodynamic design of the Mars science laboratory backshell and parachute cone, AIAA-2009-4078[R]. Reston: AIAA, 2009.

[11] Dyakonov A A, Schoenenberger M, Scallion W I, et al. Aerodynamic interference due to MSL reaction control system, AIAA-2009-3915[R]. Reston: AIAA, 2009.

[12] Cruz J R, Cianciolo A D, Powell R W, et al. Entry, descent, and landing technology concept trade study for increasing payload mass to the surface of Mars, NASA 20050158774[R]. Washington, D.C.: NASA, 2005.

[13] Zang T A, Cianciolo A M D, Ivanov M C, et al. Overview of the NASA entry, descent and landing systems analysis studies for large robotic-class missions, AIAA-2011-7294[R]. Reston: AIAA, 2011.

[14] Shidner J D, Davis J L, Dwyer-Cianciolo A M, et al. Large mass, entry, descent and landing sensitivity results for environmental, performance, and design parameters, AIAA-2010-7973[R]. Reston: AIAA, 2010.

[15] Wells G W, Lafleur J M, Verges A, et al. Entry, descent, and landing challenges of human Mars exploration[C]//29th AAS Guidance and Control Conference, Breckenridg. San Diego: AAS Publications Office, 2006.

[16] Howard A, Stanley D, Williams-Byrd J. Mars exploration entry and descent and landing technology assessment figures of merit[C]//AIAA SPACE 2001 Conference and Exposition. Reston: AIAA, 2001.

[17] Beegle L W, Wilson M G, Abillerira F, et al. A concept for NASA's Mars 2016 astrobiology field laboratory[J]. Astrobiology, 2007, 7(4): 545-577.

[18] Wright M J, Krasa P W, Hwang H H, et al. Overview of entry descent and landing investments in the NASA exploration technology development program[C]//2011 IEEE Aerospace Conference. New York: IEEE, 2011.

[19] Cruz J R, Lingard J S. Aerodynamic decelerators for planetary exploration: past, present, and future, AIAA-2006-6792[R]. Reston: AIAA, 2006.

[20] Christian J A, Wells G W, Lafleur J M, et al. Extension of traditional entry, descent, and landing technologies for human Mars exploration[J]. Journal of Spacecraft and Rockets, 2008, 45(1): 130-141.

[21] Smith B P, Tanner C L, Mahzari M, et al. A historical review of inflatable aerodynamic decelerator technology development[C]//2010 IEEE Aerospace Conference, Paper 1276. New York: IEEE, 2010.

[22] Dwyer-Cianciolo A M, Davis J L, Shidner J D, et al. Entry, descent and landing systems analysis: exploration class simulation overview and results, AIAA-2010-7970[R]. Reston: AIAA, 2010.

[23] Allen C, Robin B, Paul B, et al. Entry system design and performance summary for the Mars science laboratory mission[C]//23rd AAS/AIAA Space Flight Mechanics Meeting. San Diego: AAS Publications Office, 2013.

[24] Viviani A, Pezzella G, Golia C. Aerothermodynamic analysis of a space vehicle for manned exploration missions to Mars[C]//27th Congress of the International Council of the Aeronautical Sciences. Nice: ICAS, 2010.

[25] Pezzella G, Viviani A. Aerodynamic analysis of a manned space vehicle for missions to Mars[J]. Journal of Thermodynamics, 2011, Article ID 857061: 1-13.

[26] Pezzella G, Viviani A. Aerodynamic analysis of a Mars exploration manned capsule[J]. Acta Astronautica, 2011, 69(11): 975-986.

[27] Viviani A, Pezzella G. Aerodynamic analysis of a capsule vehicle for a manned exploration mission to Mars, AIAA-2009-7386[R].Reston: AIAA, 2009.

[28] Musil J L. Study of expandable, terminal decelerators for Mars atmosphere entry: Volume I, GER-12842[R]. Washington, D.C.: NASA, 1966.

[29] Musil J L. Study of expandable, terminal decelerators for Mars atmosphere entry: Volume II, GER-12842[R]. Washington, D.C.: NASA, 1966.

[30] Keville J F. Semi-rigid or non-rigid structures for re-entry applications, Part II: fabrication and test, SG-335-47-PT-2[R]. Akron, OH: Wright-Patterson Air Force Base, 1967.

[31] Keville J F. Semi-rigid or non-rigid structures for re-entry applications, Part III: appendices, AFML TR-67-310[R]. Ohio: Air Force Materials Laboratory, Wright-Patterson Air Force Base, 1967.

[32] Sengupta A. Overview of the Mars science laboratory parachute decelerator system, AIAA-2007-2578[R]. Reston: AIAA, 2007.

[33] Prabhu D I K, Saunders D A. On heatshield shapes for Mars entry capsules, AIAA-2012-0399[R]. Reston: AIAA, 2012.

[34] Reichenau D E A. Aerodynamic characteristics of disk-gap-band parachutes in the wake of Viking entry forebodies at Mach numbers from 0.2 to 2.6, AEDC-TR-72-78[R]. Tennessee: Arnold Air Force Station, 1972.

[35] Lau R A, Hussong J C. The Viking Mars lander decelerator system, AIAA-1970-1162[R]. Reston: AIAA, 1970.

[36] Gillis C L. The Viking decelerator system—an overview, AIAA-1973-0442[R]. Reston: AIAA, 1973.

[37] Murrow H N, Eckstrom C V, Henke D W. Development flight tests of the Viking decelerator system, AIAA-1973-0455[R]. Reston: AIAA, 1973.

[38] Dillman R A, Cheatwood F M, Corliss J M, et al. Technology developments for atmospheric entry systems[C]//3rd International Planetary Probe Workshop. Washington, D. C.: NASA, 2005.

[39] Alkandry H, Boyd I D, Reed E M, et al. Numerical study of hypersonic wind tunnel experiments for Mars entry aeroshells, AIAA-2009-3918[R]. Reston: AIAA, 2009.

[40] Fallon I E J. System design overview of the Mars Pathfinder decelerator subsystem, AIAA-1997-1511[R]. Reston: AIAA, 1997.

[41] Witkowski A. Mars Pathfinder parachute system performance, AIAA-1999-1701[R]. Reston: AIAA, 1999.

[42] Desai P N, Schofield J T, Lisano M E. Flight reconstruction of the Mars Pathfinder disk-gap-band parachute drag coefficient, AIAA-2003-2126[R]. Reston: AIAA, 2003.

[43] Witkowski A, Kandis M, Bruno R, et al. Mars exploration rover parachute system performance, AIAA-2005-1605[R]. Reston: AIAA, 2005.

[44] Desai P N, Knocke P C. Mars exploration rovers entry, descent, and landing trajectory analysis, AIAA-2004-5092[R]. Reston: AIAA, 2004.

[45] Witkowski A, Bruno R. Mars exploration rover parachute decelerator system program overview, AIAA-2003-2100[R]. Reston: AIAA, 2003.

[46] Steltzner A, Desai P, Lee W, et al. The Mars exploration rovers entry descent and landing and the use of aerodynamic decelerators, AIAA-2003-2125[R]. Reston: AIAA, 2003.

[47] Myron R G, Benjamin D C. Overview of the phoenix entry, descent, and landing system architecture, AIAA- 2008-7218[R]. Reston: AIAA, 2008.

[48] Robert C B, Prasun N D. Mars phoenix entry, descent, and landing trajectory and atmosphere reconstruction[J]. Journal of Spacecraft and Rockets, 2011, 48(5): 809-821.

[49] Mahzari M, Braun R D, White T R. Reconstruction of Mars Pathfinder aerothermal heating and heatshield material response using inverse methods, AIAA-2012-2872[R]. Reston: AIAA, 2012.

[50] Ingoldby R N, Michel F C, Flaherty T M, et al. Entry data analysis for Viking landers 1 and 2, NASA CR-159388[R]. Washington, D.C.: NASA, 1976.

[51] Allen C, Ashwin V, Alicia C, et al. Atmospheric risk assessment for the Mars science laboratory entry, descent, and landing system[C]//2010 IEEE Aerospace Conference. New York: IEEE, 2010.

[52] Ashley M K, Gregory F D, Curtis K I, et al. A concept for the entry, descent, and landing of high-mass payloads at Mars[J]. Acta Astronautica, 2010, 66(7-8): 1146-1159.

[53] Palmer G, Allen G, Tang C, et al. Coupled fluids-radiation analysis of a high-mass Mars entry vehicle, AIAA-2011-3495[R]. Reston: AIAA, 2011.

[54] Akin D. Applications of ultra-low ballistic coefficient entry vehicles to existing and future space missions, AIAA-2010-1928[R]. Reston: AIAA, 2010.

[55] Meginnis I, Putnam Z, Clark I, et al. Guided entry performance of low ballistic coefficient vehicles at Mars[J]. Journal of Spacecraft and Rockets, 2013, 50(5): 1047-1059.

[56] Witkowski A, Brown G. Mars deployable decelerators capability roadmap summary[C]//2006 IEEE Aerospace Conference. New York: IEEE, 2006.

[57] Cheatwood F M, Corliss J M, Player C J, et al. Inflatable entry systems technologies for NASA exploration, AIAA-2005-6811[R]. Reston: AIAA, 2005.

[58] Graves C A, Westhelle C H, Madsen C, et al. Inflatable aeroshells as an alternative aerodynamic decelerator[J]. Advances in the Astronautical Sciences, 2005, 121: 279-291.

[59] Player C J, Cheatwood F M, Corliss J M. Development of inflatable entry systems technologies[C]//3rd International Planetary Probe Workshop. Washington, D.C.: NASA, 2005.

[60] Brown G J, Lingard J S, Darley M G, et al. Inflatable aerocapture decelerators for Mars orbiters, AIAA-2007-2543[R]. Reston: AIAA, 2007.

[61] Clark I G, Hutchings A L, Tanner C L, et al. Supersonic inflatable aerodynamic decelerators for use on future robotic missions to Mars[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 340-352.

[62] Clark I G. Aerodynamic design, analysis, and validation of a supersonic inflatable decelerator[D]. Atlanta: Georgia Institute of Technology, 2009.

[63] Karagiozis K, Cirak F, Kamakoti R, et al. Computational fluid-structure interaction methods for simulation of inflatable aerodynamic decelerators, AIAA-2009-2968[R]. Reston: AIAA, 2009.

[64] Wei J Z, Tan H F, Wang W Z, et al. New trends in inflatable re-entry aeroshell[J]. Journal of Astronautics, 2013, 34(7): 881-890 (in Chinese). 卫剑征, 谭惠丰, 王伟志, 等. 充气式再入减速器研究最新进展[J]. 宇航学报, 2013, 34(7): 881-890.

[65] Hughes S J, Cheatwood F M, Dillman R A, et al. Hypersonic inflatable aerodynamic decelerator (HIAD) technology development overview, AIAA-2011-2524[R]. Reston: AIAA, 2011.

[66] Beck R A, Arnold J O, White S, et al. Overview of initial development of flexible ablators for hypersonic inflatable aerodynamic decelerators, AIAA-2011-2511[R]. Reston: AIAA, 2011.

[67] Stein J, Sandy C. Recent developments in inflatable airbag impact attenuation systems for Mars exploration, AIAA-2003-1900[R]. Reston: AIAA, 2003.

[68] Brown G J, Epp C, Graves C, et al. Hypercone inflatable supersonic decelerator, AIAA-2003-2167[R]. Reston: AIAA, 2003.

[69] Smith B P, Braun R D, Clark I G. Oscillation of supersonic inflatable aerodynamic decelerators at Mars, AIAA-2011-2516[R]. Reston: AIAA, 2011.

[70] McShera J T. Aerodynamic drag and stability characteristics of towed inflatable decelerators at supersonic speeds, NASA TN D-1601[R]. Washington, D.C.: NASA, 1963.

[71] Barton R R. Development of attached inflatable decelerators for supersonic application, NASA CR-66613[R]. Washington, D.C.: NASA, 1968.

[72] Mikulas J M M, Bohon H L. Development status of attached inflatable decelerators[J]. Journal of Spacecraft and Rockets, 1969, 6(6): 654-660.

[73] Bohon H L, Miserentino R. Attached inflatable decelerator (AID) performance evaluation and mission application study[J]. Journal of Spacecraft and Rockets, 1971, 8(9): 952-957.

[74] Faurote G L, Burgess J L. Thermal and stress analysis of an attached inflatable decelerator (AID) deployed in the Mars and Earth atmospheres, GER-14939[R]. Washington, D.C.: NASA, 1971.

[75] Faurote G L. Design, fabrication, and static testing of attached inflatable decelerator (AID) models, NASA CR-111831[R]. Washington, D.C.: NASA, 1971.

[76] McShera J T, Keyes J W. Wind-tunnel investigations of a balloon as a towed decelerator at Mach numbers from 1.47 to 2.50, NASA TN-D-919[R]. Washington, D.C.: NASA, 1961.

[77] Alexander W C. Investigation to determine the feasibility of using inflatable balloon type drag devices for recovery applications in the transonic, supersonic, and hypersonic flight regime Part II: Mach 4 to Mach 10 feasibility investigation, ASD TDR-62-702[R]. Akron, OH: Wright-Patterson Air Force Base, 1962.

[78] Moog R D, Michel F C. Balloon launched Viking decelerator test program summary report, NASA CR-112288[R]. Washington, D.C.: NASA, 1973.

[79] Deveikis W D, Sawyer J W. Aerodynamic characteristics of tension shell shapes at Mach 3.0, NASA TN D-3633[R]. Washington, D.C.: NASA, 1966.

[80] Robinson J C, Jordan A W. Exploratory experimental aerodynamic investigation of tension shell shapes at Mach 7, NASA TN-D-2994[R]. Washington, D.C.: NASA, 1965.

[81] Creel T R, Jr. Longitudinal aerodynamic characteristics of a tension shell entry configuration at Mach 20, NASA TN-D-3541[R]. Washington, D.C.: NASA, 1966.

[82] Kyser A C. Deployment mechanics for an inflatable tension-cone decelerator, NASA CR-929[R]. Washington, D.C.: NASA, 1967.

[83] Marraffa L, Kassing D, Baglioni P, et al. Inflatable re-entry technologies: flight demonstration and future prospects[J]. ESA Bulletin, 2000, 103: 78-85.

[84] Walther S, Thaeter J, Reimers C, et al. New space application opportunities based on the inflatable reentry & descent technology IRDT[C]//2003 AIAA/ICAS International Air and Space Symposium and Exposition. 2003.

[85] Wilde D, Walther S. Flight test and ISS application of the inflatable reentry and descent technology (IRDT)[J]. Acta Astronautica, 2002, 51(1-9): 83-88.

[86] Evans D, Reynier P. Postflight analysis of inflatable reentry and descent technology blackout during Earth reentry[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 800-809.

[87] Walther S. New space application opportunities based on the inflatable reentry & descent technology (IRDT), AIAA-2003-2839[R]. Reston: AIAA, 2003.

[88] Alifanov O M, Outchvatov V I, Pichkhactzo K M. Thermal protection of re-entry vehicles with the usage of inflatable systems[J]. Acta Astronautica, 2003, 53(4-10): 541-546.

[89] Wang L S. Research on control method for moving mass reentry vehicle[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). 王连胜. 充气式再入飞船的变质心控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

[90] Xu J Y. Stractural dynamic characteristics analysis of inflatable re-entry vehicle[D]. Harbin: Harbin Institute of Technology, 2012 (in Chinese). 许家裕. 充气式返回飞行器的结构动态特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.

[91] He W L, Cai J J, Wang L F, et al. Inflatable reentry technologies research for single launching and multi-reentry (SLMR) space transporting system[J]. Manned Spaceflight, 2011(4): 37-42 (in Chinese). 贺卫亮, 才晶晶, 汪龙芳, 等. 一次发射多次返回的充气式再入飞行器技术[J]. 载人航天, 2011(4): 37-42.

[92] Xia G, Cheng W K, Qin Z Z. Development of flexible thermal protection for system inflatable re-entry vehicles[J]. Aerospace Materials & Technology, 2003(6): 1-6 (in Chinese). 夏刚, 程文科, 秦子增. 充气式再入飞行器柔性防护系统的发展状况[J]. 宇航材料工艺, 2003(6): 1- 6.

[93] Cao X. The application of Al2O3 fibers in space inflatable aerodynamic decelerator structures[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(5): 16-21 (in Chinese). 曹旭. Al2O3纤维在空间充气式气动阻尼结构中的应用[J]. 航天返回与遥感, 2010, 31(5): 16-21.

[94] Tang W, Gui Y W, Wang A L, et al. Aerodynamic design for an inflatable reentry and descent decelerator[J]. Journal of Astronautics, 2007, 28(2): 265-268 (in Chinese). 唐伟, 桂业伟, 王安龄, 等. 充气气囊减速方案的气动设计研究[J]. 宇航学报, 2007, 28(2): 265-268.

[95] Hughes S J, Dillman R A, Starr B R, et al. Inflatable re-entry vehicle experiment (IRVE) design overview, AIAA-2005-1636[R]. Reston: AIAA, 2005.

[96] Starr B R, Bose D M, Thornblom M, et al. Inflatable reentry vehicle experiment flight performance simulations[C]//53rd JANNAF Propulsion Meeting. Reston: AIAA, 2005.

[97] Lindell M C, Hughes M C, Dixon M, et al. Structural analysis and testing of the inflatable re-entry vehicle experiment (IRVE), AIAA-2006-1699[R]. Reston: AIAA, 2006.

[98] Dillman R, Hughes S J, Bodkin R J, et al. Flight performance of the inflatable re-entry vehicle experiment II[C]//7th Interplanetary Probe Workshop. Washington, D.C.: NASA, 2010.

[99] O'Keefe S A, Bose D M. IRVE-II post-flight trajectory reconstruction, AIAA-2010-7515[R]. Reston: AIAA, 2010.

[100] Lichodziejewski L, Kelley C, Tutt B, et al. Design and testing of the inflatable aeroshell for the IRVE-3 flight experiment[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012.

[101] Litton D K, Bose D M, Cheatwood F M, et al. Inflatable re-entry vehicle experiment (IRVE)-4 overview, AIAA-2011-2580[R]. Reston: AIAA, 2011.

[102] Player C. PAIDAE thermal protection system testing final report FY2008, PAI-DAE-3.3-012[R]. Washington, D.C.: NASA Langley Research Center, 2008.

[103] McGuire M K, Arnold J O, Covington M A, et al. Flexible ablative thermal protection sizing on inflatable aerodynamic decelerator for human Mars entry descent and landing, AIAA-2011-0344[R]. Reston: AIAA, 2011.

[104] Mazaheri A. High-energy atmospheric reentry test aerothermodynamic analysis[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 270-281.

[105] Steinfeldt B A, Theisinger J E, Korzun A M, et al. High mass Mars entry, descent, and landing architecture assessment, AIAA-2009-6684[R]. Reston: AIAA, 2009.

[106] Reza S, Hund R, Kustas F, et al. Aerocapture inflatable decelerator (AID) for planetary entry, AIAA-2007-2516[R]. Reston: AIAA, 2007.

[107] Samareh J A. Estimating mass of inflatable aerodynamic decelerators using dimensionless parameters[C]//8th International Planetary Probe Workshop. Washington, D.C.: NASA, 2011.

[108] Hutchings A L, Braun R D, Masuyama K, et al. Experimental determination of material properties for inflatable aeroshell structures, AIAA-2009-2949[R]. Reston: AIAA, 2009.

[109] Clark I G, Cruz J R, Hughes M F, et al. Aerodynamic and aeroelastic characteristics of a tension cone inflatable aerodynamic decelerator, AIAA-2009-2967[R]. Reston: AIAA, 2009.

[110] Kustas F M, Rawal S P, Willcockson W H, et al. Inflatable decelerator ballute for planetary exploration spacecraft, AIAA-2000-1795[R]. Reston: AIAA, 2000.

[111] Gnoffo P A. Aerothermodynamic analyses of towed ballutes, AIAA-2006-3771[R]. Reston: AIAA, 2006.

[112] Rasheed A, Fujii K, Hornung H, et al. Experimental investigation of the flow over a toroidal aerocapture ballute, AIAA-2001-2460[R]. Reston: AIAA, 2001.

[113] McIntyre T, Lourel I, Eichmann T, et al. Experimental expansion tube study of the flow over a toroidal ballute[J]. Journal of Spacecraft and Rockets, 2004, 41(5): 716-725.

[114] Fallon J II E. Supersonic stabilization and deceleration-ballutes revisited, AIAA-1995-1584-CP[R]. Reston: AIAA, 1995.

[115] Houtz N E. Optimization of inflatable drag devices by isotensoid design, AIAA-1964-0437[R]. Reston: AIAA, 1964.

[116] Axdahl E, Cruz J R, Schoenenberger M, et al. Flight dynamics of an aeroshell using an attached inflatable aerodynamic decelerator, AIAA-2009-2963[R]. Reston: AIAA, 2009.

[117] Venkatapathy E, Arnold J, Fernandez I, et al. Adaptive deployable entry and placement technology (ADEPT): a feasibility study for human missions to Mars, AIAA- 2011-2608[R]. Reston: AIAA, 2011.

[118] Hughes S J, Ware J S, Del Corso J A, et al. Deployable aeroshell flexible thermal protection system testing, AIAA-2009-2926[R]. Reston: AIAA, 2009.

[119] Venkatapathy E. Adaptive deployable entry placement technology: a technology development project funded by game changing development program of the office of the chief technologist[C]//9th International Planetary Probe Workshop. Washington, D.C.: NASA, 2012.

[120] Smith B, Venkatapathy E, Wercinski P, et al. Venus in situ explorer mission design using a mechanically deployed aerodynamic decelerator[C]//2013 IEEE Aerospace Conference. New York: IEEE, 2013.

[121] Arnold J O, Peterson K H, Yount B C, et al. Thermal and structural performance of woven carbon cloth for adaptive deployable entry and placement technology[C]//22nd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2013.

[122] Deitering J S, Hilliard E E. Wind tunnel investigation of flexible aerodynamic decelerator characteristics at Mach numbers 1.5 to 6.0, AEDC TDR-65-110[R]. Tennessee: Arnold Air Force Station, 1965.

[123] Nebiker F R. Aerodynamic deployable decelerator performance-evaluation program, AFFDL TR-65-27[R]. Akron, OH: Wright-Patterson Air Force Base, 1965.

[124] Bloetscher F. Aerodynamic deployable decelerator performance-evaluation program, Phase II, AFFDL TR-67-24[R]. Akron, OH: Wright-Patterson Air Force Base, 1967.

[125] Schmid M, Trabandt U. Deployable heat shield and deceleration structure for spacecraft: U.S. Patent 7-837-154 [P]. 2010-11-23.

[126] Stern E, Barnhardt M, Venkatapathy E, et al. Investigation of transonic wake dynamics for mechanically deployable entry systems[C]//2012 IEEE Aerospace Conference. New York: IEEE, 2012.

[127] Venkatapathy E, Arnold J, Fernandez I, et al. Transformable entry system technologies (TEST) concept feasibility final report, NASA TM-2011-215970[R]. Washington, D.C.: NASA, 2011.

[128] Venkatapathy E, Wercinski P, Beck R, et al. Mechanically-deployed hypersonic decelerator and conformal ablator technologies for Mars missions, ARC-E-DAA-TN5858[R]. Washington, D.C.: NASA, 2012.

[129] Edquist K T, Dyakonov A A, Wright M J, et al. Aerothermodynamic design of the Mars science laboratory heatshield, AIAA-2009-4075[R]. Reston: AIAA, 2009.

[130] Yount B, Prabhu D, Kruger C, et al. Structures and mechanisms design concepts for adaptive deployable entry placement technology, AIAA-2013-1369[R]. Reston: AIAA, 2013.

[131] Gillis C L. Deployable aerodynamic decelerators for space missions[J]. Journal of Spacecraft and Rockets, 1969, 6(8): 885-890.

[132] Korzun A M, Braun R D, Cruz J R. A Survey of supersonic retropropulsion technology for Mars entry, descent, and landing[C]//2008 IEEE Aerospace Conference. New York: IEEE, 2008.

[133] Edquist K T, Dyakonov A A, Korzun A M, et al. Development of supersonic retro-propulsion for future Mars entry, descent, and landing systems, AIAA-2010-5046[R]. Reston: AIAA, 2010.

[134] Korzun A M, Braun R D. Performance characterization of supersonic retropropulsion for application to high-mass Mars entry, descent, and landing, AIAA-2009-5613[R]. Reston: AIAA, 2009.

[135] Korzun A M. Aerodynamic and performance characterization of supersonic retropropulsion for application to planetary entry and descent[D]. Atlanta, GA: Georgia Institute of Technology, 2012.

[136] Alkandry H. Aerodynamic interactions of propulsive deceleration and reaction control system jets on Mars—entry aeroshells[D]. Ann Arbor: University of Michigan, 2012.

[137] Charczenko N, Hennessey K. Investigation of a retrorocket exhausting from the nose of a blunt body into a supersonic free stream, NASA TN D-751[R]. Washington, D.C.: NASA, 1961.

[138] Romeo D J, Sterrett J R. Exploratory investigation of the effect of a forward-facing jet on the bow shock of a blunt body in a Mach number 6 free stream, NASA TN D-1605[R]. Washington, D.C.: NASA, 1963.

[139] Charwat A F, Allegre J. Interaction of a supersonic stream and a transverse supersonic jet[J]. AIAA Journal, 1964, 2(11): 1965-1972.

[140] Alexander W C, Lau R A. State-of-the-art study for high-speed deceleration and stabilization devices, GER-12616[R]. Washington, D.C.: NASA, 1966.

[141] Kyriss C L, Rie H. Theoretical investigation of entry vehicle stability in the Mars atmosphere[J]. Journal of Spacecraft and Rockets, 1967, 4(2): 272-275.

[142] Keyes J W, Hefner J N. Effect of forward facing jets on aerodynamic characteristics of blunt configurations at Mach 6[J]. Journal of Spacecraft and Rockets, 1967, 4(4): 533-534.

[143] Jarvinen P, Adams R. The aerodynamic characteristics of large angled cones with retrorockets, NASA 7-576[R]. Washington, D.C.: NASA, 1970.

[144] Jarvinen P, Adams R. The effects of retrorockets on the aerodynamic characteristics of conical aeroshell planetary entry vehicles, AIAA-1970-0219[R]. Reston: AIAA, 1970.

[145] Fomin V M, Maslov A A, Malmuth N D. Influence of a counter flow plasma jet on supersonic blunt-body pressures[J]. AIAA Journal, 2002, 40(6): 1170-1177.

[146] Daso E O, Pritchett V E, Wang T S. The dynamics of shock dispersion and interactions in supersonic freestreams with counter flowing jets, AIAA-2007-1423[R]. Reston: AIAA, 2007.

[147] Marsh C L, Braun R D. Fully-propulsive Mars atmospheric transit strategies for high-mass payload missions[C]//2009 IEEE Aerospace conference. New York: IEEE, 2009.

[148] Drake B G. Human exploration of Mars, design reference architecture 5.0, NASA SP-2009-566[R]. Washington, D.C.: NASA, 2009.

[149] Drake B G. Human exploration of Mars: challenges and design reference architecture 5.0[J]. Journal of Cosmology, 2010, 12: 3578-3587.

[150] Drake B G, Hoffman S J, Beaty D W. Human exploration of Mars, design reference architecture 5.0[C]//2010 IEEE Aerospace Conference. New York: IEEE, 2010.

[151] Hoffman S J, Kaplan D I. Human exploration of Mars: the reference mission of the NASA Mars exploration study team[R]. Washington, D.C.: NASA Johnson Space Center, 1997.

[152] Drake B G. Reference mission version 3.0: addendum to the human exploration of Mars: the reference mission of the NASA Mars exploration study team, NASA/SP-6107-ADD[R]. Washington, D.C.: NASA, 1998.

[153] Tanner L G. Development and characteristics of the Russian/American RD-180 rocket engine[C]//AIAA Joint Propulsion Conference, Liquid Propulsion Short Course. Reston: AIAA, 2002.

[154] Peterson V, McKenzie R. Effects of simulated retrorockets on the aerodynamic characteristics of a body of revolution at Mach numbers from 0.25 to 1.90, NASA TN D-1300[R]. Washington, D.C.: NASA, 1962.

[155] Korzun A M, Cordell C E, Jr, Braun R D. Comparison of inviscid and viscous aerodynamic predictions of supersonic retropropulsion flowfields, AIAA-2010-5048[R]. Reston: AIAA, 2010.

[156] Trumble K A, Kleb W, Carlson J R, et al. An initial assessment of Navier-Stokes codes applied to supersonic retro-propulsion, AIAA-2010-5047[R]. Reston: AIAA, 2010.

文章导航

/