双框架飞机蒙皮检测机器人切换运动控制方法
收稿日期: 2014-07-07
修回日期: 2014-07-14
网络出版日期: 2014-10-08
基金资助
江苏省科技支撑(工业)计划项目 (BE2010190)
Switching motion control of an aircraft skin detection robot with double frames
Received date: 2014-07-07
Revised date: 2014-07-14
Online published: 2014-10-08
Supported by
Science and Technology Support (industrial) Projects of Jiangsu Province(BE2010190)
针对一种双框架飞机蒙皮检测机器人,通过分析该机器人在飞机表面上的受力情况,在飞机表面该机器人受到了非完整约束,基于牛顿-欧拉法建立了机器人非完整约束动力学模型。根据机器人机械结构和运动步态分析,将该非完整机器人系统分为子系统A和子系统B。为了实现机器人在飞机表面运动,采用反演技术和快速Terminal滑模控制相结合的思想对系统设计了控制器,提出了一种反演-滑模控制方法;对于非完整机器人子系统A和子系统B,设计了一种基于事件驱动的切换策略,实现了机器人对期望轨迹的全局渐近跟踪,并利用Lyapunov稳定性证明系统的跟踪误差收敛。仿真和试验表明,采用该切换策略和反演-滑模控制方法,双框架飞机蒙皮检测机器人可以在飞机表面自由运动并进行损伤检测,具有良好的可靠性和稳定性。
关键词: 双框架飞机蒙皮检测机器人; 动力学模型; 反演技术; 快速Terminal滑模控制; 切换策略
沈桂鹏 , 王从庆 , 王琪 . 双框架飞机蒙皮检测机器人切换运动控制方法[J]. 航空学报, 2015 , 36(6) : 2064 -2073 . DOI: 10.7527/S1000-6893.2014.0260
Aimed at an aircraft skin detection robot with double frames, by analyzing force of the robot when it is on the plane surface, the robot is subject to nonholonomic constraints. Dynamic model with nonholonomic constraints of the robot is built based on Newton-Euler rules. The nonholonomic robot system can be divided into subsystem A and subsystem B based on robot mechanical structure and motion gaits. In order to realize motions of the robot on the plane surface, a combination of backstepping technique and fast Terminal sliding mode control for designing the subsystem controller is presented and an backstepping-sliding mode control method is proposed; as for nonholonomic robot two-systems, a dual system switching control algorithm is given based on event-driven switching law. Finally global asymptomic tracking of robot toward expected trace is realized. The system tracking error convergenve is proof by using Lyapunov stability. Simulations and tests show that using the switching control algorithm and backstepping-sliding mode control method, the aircraft skin detection robot with double frame scan turns and crawls on plane surface freely and detects the damage. And a good reliability and stability is obtained.
[1] Wang W, Zong G H. Research for the kinematic and dynamic models of a flexible glass-wall cleaning robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 29(9): 763-766 (in Chinese). 王巍, 宗光华. 灵巧壁面移动机器人运动学和动力学研究[J]. 北京航空航天大学学报, 2004, 29(9): 763-766.
[2] Yue R G, Wang S P. Dynamic modeling for a climbing robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 640-644(in Chinese). 岳荣刚, 王少萍. 一种爬壁机器人的动力学建模[J].北京航空航天大学学报, 2013, 39(5): 640-644.
[3] Li Z H, Fu Y L, Wang S G. Dynamic analysis on four-wheel driving wall-climbing robot with sliding suction cups[J]. Robot, 2010, 32(5): 601-607(in Chinese). 李志海, 付宜利, 王树国. 四轮驱动滑动吸盘爬壁机器人的动力学研究[J]. 机器人, 2010, 32(5): 601-607.
[4] Xu Z X, Liu R. Latitude moving mechanism design and kinematics analysis of hybrid climbing robot[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 495-499(in Chinese). 徐祯祥, 刘荣. 混合式壁面移动机器人横向移动机构及运动分析[J]. 航空学报, 2007, 28(2): 495-499.
[5] Pang H L, Ma B L. Adaptive unified controller of arbitrary trajectory tracking for wheeled mobile robots with unknown parameters[J]. Control Theory & Applications, 2014, 31(3): 285-292(in Chinese). 庞海龙, 马保离. 不确定轮式移动机器人的任意轨迹跟踪[J]. 控制理论与应用, 2014, 31(3): 285-292.
[6] Yan M D, Wu Q Y, He Y Y. Adaptive sliding mode tracking control of nonholonomic mobile robot[J]. Journal of System Simulation, 2007, 19(3): 579-581(in Chinese). 闫茂德, 吴青云, 贺昱曜. 非完整移动机器人的自适应滑模轨迹跟踪控制[J]. 系统仿真学报, 2007, 19(3): 579-581.
[7] Elfelly N, Dieulot J Y, Benrejeb M. A new approach for multimodel identification of complex systems based on both neural and fuzzy clustering algorithms[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7): 1064-1071.
[8] Fu Z M, Gao A Y, Fei S M, et al. Double closed-loop anti-swing control for overhead containers based on multiple models reference switching[J]. Chinese Journal of Mechanical Engineering, 2012, 47(23): 161-166(in Chinese). 付主木, 高爱云, 费树岷, 等. 集装箱桥吊多模型参考切换双闭环防摇控制[J]. 机械工程学报, 2012, 47(23): 161-166.
[9] Zhang H, Shen S Q, Guo H B. Application of mult-mode fractal switching predictive control in main steam temperature[J]. Electric Machines and Control, 2014, 18(2): 108-114(in Chinese). 张华, 沈胜强, 郭慧彬. 多模型分形切换预测控制在主汽温度调节中的应用[J]. 电机与控制学报, 2014, 18(2): 108-114.
[10] Wang T M, Tao Y, Wei H X, et al. Hybrid location method for home service robot based on the intelligent space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 231-235(in Chinese). 王田苗, 陶永, 魏洪兴, 等. 基于智能空间的家庭服务机器人混合定位方法[J]. 北京航空航天大学学报, 2009, 35(2): 231-235.
[11] Duan X, Bian G, Zhao H, et al. A medical robot for needle placement therapy in liver cancer[J]. Journal of Zhejiang University SCIENCE A, 2010, 11(4): 263-269.
[12] Coelho P, Nunes U. Path-following control of mobile robots in presence of uncertainties[J]. IEEE Transactions on Robotics, 2005, 21(2): 252-261.
[13] Zhang D J, Zhang N N, Feng Y. Fast terminal sliding mode control for flexible manipulators with uncertain parameters[J]. Control and Decision, 2010, 25(3): 433-436(in Chinese). 张德江, 张袅娜, 冯勇. 参数不确定柔性机械手的快速终端滑模控制[J]. 控制与决策, 2010, 25(3): 433-436.
[14] Min Y Y, Liu Y G. Barbalat lemma and its application in analysis of system stability [J]. Journal of Shandong University: Engineering Science, 2007, 37(1): 51-55(in Chinese). 闵颖颖, 刘允刚. Barbalat 引理及其在系统稳定性分析中的应用[J]. 山东大学学报: 工学版, 2007, 37(1): 51-55.
[15] Sun Z D, Ge S S. Switched Linear Systems: control and design[M]. London: Springer, 2005: 211-245.
/
〈 | 〉 |