材料工程与机械制造

超高强度钢立铣工件温度分析及对加工表面质量的影响

  • 杨升 ,
  • 董琼 ,
  • 彭芳瑜 ,
  • 林森 ,
  • 闫蓉
展开
  • 1. 华中科技大学 国家数控系统工程技术研究中心, 武汉 430074;
    2. 华中科技大学 数字制造装备与技术国家重点实验室, 武汉 430074
杨升 男, 硕士研究生。主要研究方向: 切削加工机理及加工表面质量。 Tel: 027-87542613 E-mail: 101sunrise101@163.com;彭芳瑜 男, 博士, 教授, 博士生导师。主要研究方向: 多轴数控加工、超精密加工、数控系统性能仿真。 Tel: 027-87543747 E-mail: zwm8917@263.net

收稿日期: 2014-06-24

  修回日期: 2014-09-16

  网络出版日期: 2014-10-08

基金资助

国家重点基础研究发展计划 (2011CB706803); 国家自然科学基金 (51121002); 湖北省重大科技创新计划(2013AAA008)

Workpiece temperature analysis and its impact on machined surface quality of ultra-high strength steel in end milling

  • YANG Sheng ,
  • DONG Qiong ,
  • PENG Fangyu ,
  • LIN Sen ,
  • YAN Rong
Expand
  • 1. National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2014-06-24

  Revised date: 2014-09-16

  Online published: 2014-10-08

Supported by

National Program on Key Basic Research Project (2011CB706803); National Natural Science Foundation of China (51121002); Key Technology Innovation Project of Hubei Province of China (2013AAA008)

摘要

以航空难加工材料300M钢为研究对象,基于立铣加工中的工件温度判断在铣削加工中是否出现了金相组织转变,进而分析不同工况下影响加工表面质量的因素。首先,将移动热源法应用于铣削加工中,计算考虑后刀面磨损的立铣加工工件温度,实验表明,计算值与实验值相比误差在10%以内。然后,分析了工件温度在时间上与空间上的分布,以及不同刀具磨损和加工参数条件下工件表面的温升规律,据此预测加工表面是否出现了组织转变,并结合金相组织观察进一步确认。最后,依据加工表面质量物理层面残余应力和显微硬度的检测数据,初步探讨了各因素对表面质量的影响。结果表明,在研究的加工参数范围内,并未达到金相组织转变温度,表面质量主要受铣削热力作用下的剪切面塑性凸出效应、后刀面挤光效应和热效应的影响。

本文引用格式

杨升 , 董琼 , 彭芳瑜 , 林森 , 闫蓉 . 超高强度钢立铣工件温度分析及对加工表面质量的影响[J]. 航空学报, 2015 , 36(5) : 1722 -1732 . DOI: 10.7527/S1000-6893.2014.0261

Abstract

300M steel is chosen for the research object, which is the typical difficult-to-cut material in aviation industry. Microstructure changes are judged in milling based on the workpiece temperature. Then the main factors affecting the quality of the machined surface are also analyzed under different cutting conditions. Firstly, moving heat source method is applied to the milling process. The workpiece temperature model of end milling is established considering the flank rubbing effect. The temperature model is confirmed by the temperature measuring experiment and the error is less than 10%. Secondly, Temperature model is used to analyze the temperature variation on the workpiece surface over time, as well as the distribution along the depth into workpiece. The influences of processing parameters and tool wear on the surface temperature rise are studied. Finally, the quality of machined surface in physical level such as residual stress and microhardness is analyzed with different cutting conditions according to the test data. The results show that within the range of processing parameters studied, workpiece temperature is not higher than the phase transformation temperature. So, surface quality is mainly affected by the plastic bulge, flank squeezing and thermal effect caused by the milling force and temperature.

参考文献

[1] Wu J. Study on the influence of polishing after shot peening on 300M steel[D]. Xi'an: Northwestern Polytechnical University, 2007 (in Chinese). 武俊. 300M钢喷丸强化工艺中打磨问题的研究[D]. 西安: 西北工业大学, 2007.
[2] Outwater J O, Shaw M C. Surface temperatures in grinding [J]. Transactions of the ASME, 1952, 74(1): 73-78.
[3] Komanduri R, Hou Z B. Thermal modeling of the metal cutting process — Part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source[J]. International Journal of Mechanical Sciences, 2001, 43(1): 89-107.
[4] Li L W, Li B, Ehmann K F, et al. A thermo-mechanical model of dry orthogonal cutting and its experimental validation through embedded micro-scale thin film thermocouple arrays in PCBN tooling[J]. International Journal of Machine Tools and Manufacture, 2013, 70: 70-87.
[5] Richardson D J, Keavey M A, Dailami F. Modelling of cutting induced workpiece temperatures for dry milling [J]. International Journal of Machine Tools and Manufacture, 2006, 46(10): 1139-1145.
[6] Chen Y, Yang S B, Fu Y C, et al. FEM estimation of tool wear in high speed cutting of Ti6Al4V alloy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2230-2240 (in Chinese). 陈燕, 杨树宝, 傅玉灿, 等. 钛合金TC4高速切削刀具磨损的有限元仿真[J]. 航空学报, 2013, 34(9): 2230-2240.
[7] Kuo H, Meyer K, Lindle R, et al. Estimation of milling tool temperature considering coolant and wear[J]. ASME Journal of Manufacturing Science and Engineering, 2012, 134(3): 31001-31002.
[8] Lin S, Peng F Y, Wen J, et al. An investigation of workpiece temperature variation in end milling considering flank rubbing effect[J]. International Journal of Machine Tools and Manufacture, 2013, 73: 71-86.
[9] Remes H, Korhonen E, Lehto P, et al. Influence of surface integrity on the fatigue strength of high-strength steels[J]. Journal of Constructional Steel Research, 2013, 89: 21-29.
[10] Hu C Y, Liu X L, Chen X, et al. Failure analysis of rotating shaft in main undercarriage [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 461-468 (in Chinese). 胡春燕, 刘新灵, 陈星, 等. 主起落架上转轴开裂原因分析[J]. 航空学报, 2014, 35(2): 461-468.
[11] Wang L T, Ke Y L, Huang Z G, et al. Study on residual stress produced in milling of aeronautic structure [J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 286-288 (in Chinese). 王立涛, 柯映林, 黄志刚, 等. 航空结构件铣削残余应力分布规律的研究[J]. 航空学报, 2003, 24(3): 286-288.
[12] Du S G, Jiang Z, Zhang D H, et al. Softening mechanism of grinding surface metamorphic layer of GH4169DA[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1446-1451 (in Chinese). 杜随更, 姜哲, 张定华, 等. GH4169DA磨削表面变质层软化机理[J]. 航空学报, 2014, 35(5): 1446-1451.
[13] Navas V G, Gonzalo O, Bengoetxea I. Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel[J]. International Journal of Machine Tools and Manufacture, 2012, 61: 48-57.
[14] Sun J, Guo Y B. A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2009, 209(8): 4036-4042.
[15] Varela P I, Rakurty C S, Balaji A K. Surface integrity in hard machining of 300M steel: effect of cutting-edge geometry on machining induced residual stresses[J]. Procedia CIRP, 2014, 13: 288-293
[16] Zhou Z H. The theory of metal cutting[M]. Beijing: China Machine Press, 1992: 62 (in Chinese). 周泽华. 金属切削理论[M]. 北京: 机械工业出版社, 1992: 62.
[17] Shaw M C. Metal cutting principles [M]. Oxford: Oxford University Press Inc., 2005: 206.
[18] Xu Q J. Study of grinding with no burn and low stress on 300M ultra-high strength steel[D]. Xi'an: Northwestern Polytechnical University, 1992 (in Chinese). 徐庆九. 300M超高强度钢无烧伤低应力磨削的研究 [D]. 西安: 西北工业大学, 1992.

文章导航

/