气动热

吸气式高超声速飞行器多学科动力学建模

  • 华如豪 ,
  • 叶正寅
展开
  • 西北工业大学 翼型叶栅空气动力学国家重点实验室, 西安 710072
华如豪 男, 博士研究生。主要研究方向:高超声速飞行器多场耦合建模和研究。 E-mail: huaruhao@126.com;叶正寅 男, 博士, 教授, 博士生导师。主要研究方向:空气动力学和气动弹性力学。 Tel: 029-88491374 E-mail: yezy@nwpu.edu.cn

收稿日期: 2014-08-28

  修回日期: 2014-09-26

  网络出版日期: 2014-09-29

基金资助

国家自然科学基金 (11272262, 91216202)

Multidisciplinary dynamics modeling and analysis of a generic hypersonic vehicle

  • HUA Ruhao ,
  • YE Zhengyin
Expand
  • National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-08-28

  Revised date: 2014-09-26

  Online published: 2014-09-29

Supported by

National Natural Science Foundation of China (11272262, 91216202)

摘要

高超声速飞行器一体化设计中存在气动/热/推进/结构弹性相互耦合的问题,首先根据飞行器的机体/发动机一体化设计思想构造了二维高超声速飞行器模型,并基于激波/膨胀波原理和动量定理建立了气动力模型,采用Chavez和Schmidt建立的超燃冲压发动机推进系统模型;在飞行器结构方面,引入变截面和变质量分布的自由梁结构模型,并采用Eckert参考焓方法分析的气动加热过程中承力梁不同轴向位置温度随时间变化特征,在此基础上运用模态法计算了燃料消耗和气动加热条件下结构的固有频率和振型特征,获得结构弹性变形的模型;最后建立了考虑热气动弹性和推进系统作用的飞行动力学方程。研究结果表明:质量变化对结构弹性特性影响比较显著,而气动加热的影响主要表现在振动频率方面,且会随着加热过程的持续而逐渐增强;结构变形会改变飞行器静配平状态,特别是在机体质量较大的最初飞行阶段,气动加热会强化结构变形对配平特征的影响;线性化系统的动力学特征分析表明,质量减小和结构变形均会增加短周期模态和振荡模态的不稳定特性,而对高度特性的影响不大,气动加热效应会进一步增加飞行力学和气动弹性的耦合特征,并导致弹性模态的稳定性降低。

本文引用格式

华如豪 , 叶正寅 . 吸气式高超声速飞行器多学科动力学建模[J]. 航空学报, 2015 , 36(1) : 346 -356 . DOI: 10.7527/S1000-6893.2014.0243

Abstract

Fluid-thermal-propulsive-structural coupling exists during the design of generic hypersonic vehicles. A two-dimensional air-breathing generic hypersonic flight vehicle model has been developed according to the design concept of hypersonic vehicle's integrated airframe/scramjet configuration, and aerodynamic model is derived from oblique-shock/Prandtl-Meyer theory and momentum theorem. A free beam model of variant cross-section and mass distribution is introduced as the structure of the vehicle, and the approach of Eckert's reference enthalpy is used to obtain temperature distribution as a function of time along the axial direction of the beam, above which the assumed modes method is used to obtain the natural frequencies and mode shapes of the structure during the consumption of fuel and aerodynamic heating. Flight dynamics equations coupled with aerothermoelasticity are finally presented. The results indicate that the structural characteristic is dominated by the mass variation over the aerodynamic heating, the effect of which is enhanced as the aerodynamic heating progresses. Results also indicate that trimmed states are changed by the effect of the flexible deflection especially at the beginning of flight process, and the aerodynamic heating enhances the effect of flexible deflection. The dynamic eigenvalues of linearized system show that both structural deflection and mass decrease adversely increase the instability of the short period and phugoid modes, while the altitude mode is slightly affected. Moreover, aerodynamic heating enhances the coupling between flight dynamics and aeroelasticity and decreases the stability of flexible modes.

参考文献

[1] Dana W. The X-15 airplane-lessons learned, AIAA-1993-0309[R]. Resten: AIAA, 1993.

[2] Spain C, Soistmann D, Parker E. et al. An overview of selected NASP aeroelastic studies at the NASA Langley research center, AIAA-1990-5218[R]. Reston: AIAA, 1990.

[3] Walkers S, Rodgers F. Falcon hypersonic technology overview, AIAA-2005-3253[R]. Reston: AIAA, 2005.

[4] Peebles C. The X-43 flight research program: lessons learned on the road to Mach 10[M]. Reston: AIAA Inc., 2007: 3-31.

[5] Yang C, Xu Y, Xie C C. Review of studies of aeroelastic of hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese). 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.

[6] Tang S, Zhu Q J. Research progresses of flight dynamics modeling of airbreathing hypersonic flight vehicle[J]. Advances in Mechanics, 2011, 41(2): 187-200 (in Chinese). 唐硕, 祝强军. 吸气式高超声速飞行器动力学建模研究进展[J]. 力学进展, 2011, 41(2): 187-200.

[7] Chavez F R, Schmidt D K. An integrated analysis aeropropulsive/aeroelastic model for the dynamic analysis of hypersonic vehicles, AIAA-1992-4567[R]. Reston: AIAA, 1992.

[8] Schmidt D K. Dynamics and control of hypersonic aeropropulsive/aeroelastic vehicles, AIAA-1992-5326[R]. Reston: AIAA, 1992.

[9] Chavez F R, Schmidt D K. Analytical aeropropulsive/aeroelastic hypersonic-vehicle model with dynamic analysis[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1308-1319.

[10] Bolender M A, Doman D B. Modeling unsteady heating effects on the structural dynamics of a hypersonic vehicle, AIAA-2006-6646[R]. Reston: AIAA, 2006.

[11] Bolender M A, Doman D B. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle, AIAA-2005-6255[R]. Reston: AIAA, 2005.

[12] Li J L, Tang Q G, Feng Z W, et al. Modeling and analysis of a hypersonic vehicle with aeroelastic effect[J]. Journal of National University of Defense Technology, 2013, 35(1): 7-11 (in Chinese). 李建林, 唐乾刚, 丰志伟, 等.气动弹性影响下高超声速飞行器动力学建模与分析[J]. 国防科学技术大学学报, 2013, 35(1): 7-11.

[13] Fiorentini L. Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D]. Ohio: The Ohio State University, 2010.

[14] Fidan B, Mirmirani M, Ioannou P. Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions, AIAA-2003-7081[R]. Reston: AIAA, 2003.

[15] Thuruthimattam B J, Friedmann P P, McNamara J J, et al. Modeling approaches to hypersonic aerothermoelasticity with application to reusable launch vehicles, AIAA-2003-1967[R]. Reston: AIAA, 2003.

[16] Mirmirani M, Wu C, Clark A, et al. Modeling for control of a generic air-breathing hypersonic vehicle, AIAA-2005-6256[R]. Reston: AIAA, 2005.

[17] Stewart M, Suresh A, Liou M, et al. Multidisciplinary analysis of a hypersonic engine, AIAA-2002-5127[R]. Reston: AIAA, 2002.

[18] McNamara J J, Friedmann P P. Aeroelastic and aeroth-ermoelastic analysis of hypersonic vehicles: current status and future trends, AIAA-2007-2013[R]. Reston: AIAA, 2007.

[19] Williams T, Bolender M A. An aerothermal flexible mode analysis of a hypersonic vehicle, AIAA-2006-6647[R]. Reston: AIAA, 2006.

[20] Saad M A. Compressible fluid flow[M]. New Jersey: Prentice-hall INC, 1985: 295-304.

[21] Shih P K, Prunty J, Mueller R N. Thermostructural concepts for hypervelocity vehicles[J]. Journal of Aircraft, 1991, 28(5): 337-345.

[22] Sun J, Liu W Q. Analysis of sharp leading-edge thermal protection of high thermal conductivity materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1622-1628 (in Chinese). 孙健, 刘伟强. 尖化前缘高导热材料防热分析[J]. 航空学报, 2011, 32(9): 1622-1628.

[23] Eckert E R G. Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature[J]. Transactions of the ASME, 1956,78(6): 1273-1283.

[24] Sachs G. Longitudinal long-term modes in super-hypersonic flight[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 539-541.

文章导航

/