气动弹性力学

气动伺服弹性研究的进展与挑战

  • 杨超 ,
  • 黄超 ,
  • 吴志刚 ,
  • 唐长红
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100191;
    2. 中航工业 第一飞机设计研究院, 西安 710089
杨超 男, 博士, 教授, 博士生导师。主要研究方向: 气动弹性、飞行力学、飞行器设计等。Tel: 010-82317528 E-mail: yangchao@buaa.edu.cn;黄超 男, 博士研究生。主要研究方向: 气动伺服弹性。Tel: 010-82338406 E-mail: airborne2007@buaa.edu.cn;吴志刚 男,博士, 副教授。主要研究方向: 气动弹性与主动控制。Tel: 010-82338723 E-mail: wuzhigang@buaa.edu.cn;唐长红 男, 硕士, 研究员。主要研究方向: 飞行器设计、气动弹性、结构强度等。Tel: 029-86833982 E-mail: tang.changhong@163.com

收稿日期: 2014-07-24

  修回日期: 2014-09-07

  网络出版日期: 2014-09-29

Progress and challenges for aeroservoelasticity research

  • YANG Chao ,
  • HUANG Chao ,
  • WU Zhigang ,
  • TANG Changhong
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2014-07-24

  Revised date: 2014-09-07

  Online published: 2014-09-29

摘要

飞机、导弹等飞行器的气动伺服弹性(ASE)问题源于空气动力、结构弹性以及控制系统之间的复杂耦合。随着飞行器朝着结构更轻、速度更快、性能更好的目标发展,该问题日益突出,直接影响飞行安全与性能。经过六十余年的研究,国内外在ASE分析、综合与试验方面取得了卓有成效的进展。近十余年来,若干新问题因非常规构型飞行器设计的发展而暴露出来,对ASE研究施加巨大挑战,值得重点分析。鉴于此,讨论了ASE分析中的刚弹耦合、非线性、推力矢量以及系统辨识等问题,对ASE综合中的阵风减缓、颤振主动控制和ASE优化问题加以阐述,强调了ASE试验中需要重视的技术,简要介绍了近十余年国外代表性的ASE试验项目案例,指出了一些ASE研究的新动向,并对国内的ASE研究给出了建议。

本文引用格式

杨超 , 黄超 , 吴志刚 , 唐长红 . 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015 , 36(4) : 1011 -1033 . DOI: 10.7527/S1000-6893.2014.0248

Abstract

The aeroservoelasticity (ASE) problems occurring on the aircraft (e.g. airplanes, missiles) originate from the sophisticated coupling between aerodynamics, structural elasticity and control system. As the aircraft develops to be lighter, faster and more capable, these problems become increasingly acute and thus have a direct influence on flight safety and performance. After more than sixty years of research, great progress has been made at home and abroad in the field of ASE analysis, synthesis and test. In the recent decade, several new issues are revealed due to the design evolution of aircraft with unconventional configuration, and pose the huge challenges to ASE research, which is worth analysis specifically. This paper discusses the problems of rigid/elastic interaction, nonlinearity, thrust vectoring and system identification in ASE analysis, and states the key issues for gust alleviation, active flutter suppression and ASE optimization in the ASE synthesis. Technologies that need to be focused in ASE tests are emphasized, followed by a brief introduction to some representative examples of overseas ASE tests in the recent decade. Some new directions towards advanced ASE research are indicated, and also suggestions are provided for domestic ASE research.

参考文献

[1] Ramsey J K. NASA aeroelasticity handbook volume 2: design guides part 2, NASA/TP-2006-212490[R]. Cleveland: NASA Glenn Research Center, 2006.
[2] Felt L R, Huttsell L J, Noll T E, et al. Aeroservoelastic encounters[J]. Journal of Aircraft, 1979, 16(7): 477-483.
[3] Livne E, Weisshaar T A. Aeroelasticity of nonconventional airplane configurations—past and future[J]. Journal of Aircraft, 2003, 40(6): 1047-1065.
[4] Schuste D M, Liu D D, Huttsell L J. Computational aeroelasticity: success, progress, challenge[J]. Journal of Aircraft, 2003, 40(5): 843-856.
[5] Dowell E H, Edwards J, Strganac T. Nonlinear aeroelasticity[J]. Journal of Aircraft, 2003, 40(5): 857-874.
[6] Mukhopadhyay V. Historical perspective on analysis and control of aeroelastic responses[J]. Journal of Guidance, Control and Dynamics, 2003, 26(5): 673-684.
[7] Bhatia K G. Airplane aeroelasticity: practice and potential[J]. Journal of Aircraft, 2003, 40(6): 1010-1018.
[8] Cole S R, Noll T E, Perry B. Transonic dynamics tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft, 2003, 40(5): 820-831.
[9] Harris T M, Huttsell L J. Aeroelasticity research at Wright-Patterson air force base (wright field) from 1953—1993[J]. Journal of Aircraft, 2003, 40(5): 813-819.
[10] Livne E. Future of airplane aeroelasticity[J]. Journal of Aircraft, 2003, 40(6): 1066-1092.
[11] Karpel M. Procedures and models for aeroservoelastic analysis and design[J]. Journal of Applied Mathematics and Mechanics, 2001, 81(9): 579-592.
[12] Gupta K K, Meek J L. Finite element multidisciplinary analysis[M]. 2nd ed. Reston: AIAA, 2003: 295-310.
[13] Yang C, Wu Z G, Wan Z Q, et al. Principle of aircraft aeroelasticity[M]. Beijing: Beihang University Press, 2011: 148-167 (in Chinese). 杨超, 吴志刚, 万志强, 等. 飞行器气动弹性原理[M]. 北京: 北京航空航天大学出版社, 2011: 148-167.
[14] Rodden W P, Johnson E H. MSC/NASTRAN aeroelastic analysis user's guide[M]. Version 68. Los Angeles: MacNeal-Schwendler, 1994: 7-132.
[15] Gupta K K. STARS-An integrated, multidisciplinary, finite-element, structural, fluids, aeroelastic and aeroservoelastic analysis computer program, NASA/TM-1997-4795[R]. Edwards: NASA Dryden Flight Research Center, 1997.
[16] ZONA Technology. ZAERO user's manual[M]. Version 8.5. Scottsdale: ZONA Technology Inc., 2011: 458-488.
[17] Britt R T, Jacobson S B, Arthurs T D. Aeroservoelastic analysis of the B-2 bomber[J]. Journal of Aircraft, 2000, 37(5): 745-752.
[18] Pitt D M, Hayes W B, Goodman C E. F/A-18E/F aeroservoelastic design, analysis and test, AIAA-2003-1880[R]. Reston: AIAA, 2003.
[19] Wray W R. F-22 structural coupling lessons learned, RTO-MP-36-4[R]. Hull: Canada Communication Group Inc., 2000.
[20] Redd L T, Gilman J, Cooley D E, et al. Wind-tunnel investigation of a B-52 model flutter suppression system[J]. Journal of Aircraft, 1974, 11(11): 659-663.
[21] Roger K L, Hodges G E, Felt L. Active flutter suppression-a flight test demonstration[J]. Journal of Aircraft, 1975, 12(6): 551-556.
[22] Disney T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2): 81-86.
[23] Hwang C, Johnson E H, Pi W S. Recent development of the YF-17 active flutter suppression system[J]. Journal of Aircraft, 1981, 18(7): 537-545.
[24] Murrow H N, Eckstrom C V. Drones for aerodynamic and structural testing (DAST)—a status report[J]. Journal of Aircraft, 1979, 16(8): 521-526.
[25] McGehee C R. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, NASA/CR-1986-177959[R]. Hampton: NASA Langley Research Center, 1986.
[26] Perry B, Cole S R, Miller G D. Summary of an active flexible wing program[J]. Journal of Aircraft, 1995, 32(1): 10-15.
[27] Mukhopadhyay V. Flutter suppression control law design and testing for the active flexible wing[J]. Journal of Aircraft, 1995, 32(1): 45-51.
[28] Mason G S, Berg M C, Mukhopadhyay V. Multi-rate flutter suppression system design for the benchmark active control technology wing, Part I: theory and design procedure, NASA/TM-2002-212128[R]. Hampton: NASA Langley Research Center, 2002.
[29] Mason G S, Berg M C, Mukhopadhyay V. Multi-rate flutter suppression system design for the benchmark active control technology wing, Part II: methodology application software toolbox, NASA/TM-2002-212129[R]. Hampton: NASA Langley Research Center, 2002.
[30] Pendleton E W, Bessette D, Field P B, et al. Active aeroelastic wing flight research program: technical program and model analytical development[J]. Journal of Aircraft, 2000, 37(4): 554-561.
[31] Pendleton E W, Flick P, Paul D, et al. The X-53: a summary of the active aeroelastic wing flight research program, AIAA-2007-1855[R]. Reston: AIAA, 2007.
[32] Karpel M, Moulin B, Idan M. Robust aeroservoelastic design with structural variations and modeling uncertainties[J]. Journal of Aircraft, 2003, 40(5): 946-954.
[33] Dai Y T, Yang C. Methods and advances in the study of aeroelasticity with uncertainties[J]. Chinese Journal of Aeronautics, 2014, 27(3): 461-474.
[34] Waszak M R, Buttrill C S, Schmidt D K. Modeling and model simplification of aeroelastic vehicles: an overview, NASA/TM-1992-107691[R]. Hampton: NASA Langley Research Center, 1992.
[35] Dykman J R, Rodden W P. Structural dynamics and quasistatic aeroelastic equations of motion[J]. Journal of Aircraft, 2000, 37(3): 538-542.
[36] Baldelli D H, Chen P C, Panza J. Unified aeroelastic and flight dynamic formulation via rational function approximations[J]. Journal of Aircraft, 2006, 43(3): 763-772.
[37] Noll T E, Ishmeal S D, Henwood B, et al. Technical findings, lessons learned and recommendations resulting from the Helios prototype vehicle mishap, NASA/WBS-810031[R]. Hampton: NASA Langley Research Center, 2007.
[38] Shearer C M, Cesnik C E S. Nonlinear flight dynamics of very flexible aircraft[J]. Journal of Aircraft, 2007, 44(5): 1528-1545.
[39] Su W H, Cesnik C E S. Nonlinear aeroelasticity of a very flexible blended-wing-body aircraft[J]. Journal of Aircraft, 2010, 47(5): 1539-1553.
[40] Su W H, Cesnik C E S. Dynamic response of highly flexible flying wings[J]. AIAA Journal, 2011, 49(2): 324-339.
[41] Cesnik C E S, Senatore P J, Su W, et al. X-HALE: a very flexible unmanned aerial vehicle for nonlinear aeroelastic tests[J]. AIAA Journal, 2012, 50(12): 2820-2833.
[42] Banerjee J R. Flutter characteristics of high aspect ratio tailless aircraft[J]. Journal of Aircraft, 1984, 21(9): 733-736.
[43] Miller G D, Wykes J H, Brosnan M J. Rigid-body structural mode coupling on a forward swept wing aircraft[J]. Journal of Aircraft, 1983, 20(8): 696-702.
[44] Weisshaar T A, Zeiler T A. Dynamic stability of flexible swept wing aircraft[J]. Journal of Aircraft, 1983, 20(12): 1014-1020.
[45] Chipman R, Rauch F, Rimer M, et al. Body-freedom flutter of a 1-2 scale forward-swept-wing model an experimental and analytical study, NASA/CR-172324[R]. Hampton: NASA Langley Research Center, 1984.
[46] Soistmann D L, Spain C V. An experimental and analytical study of a lifting-body wind-tunnel model exhibiting body-freedom flutter, AIAA-1993-1316[R]. Reston: AIAA, 1993.
[47] Pike E C. Manual on aeroelasticity, AGARD-R-578-71[R]. London: AGARD/NATO, 1971.
[48] Beranek J, Nicolai L, Buonanno M, et al. Conceptual design of a multi-utility aeroelastic demonstrator, AIAA-2010-9350[R]. Reston: AIAA, 2010.
[49] Burnett E L, Atkinson C, Beranek J, et al. NDOF simulation model for flight control development with flight test correlation, AIAA-2010-7780[R]. Reston: AIAA, 2010.
[50] Love M H, Zink P S, Wieselmann P A, et al. Body freedom flutter of high aspect ratio flying wings, AIAA-2005-1947[R]. Reston: AIAA, 2005.
[51] Lucia D J. The Sensorcraft configuration: a nonlinear aeroservoelastic challenge for aviation, AIAA-2005-1943[R]. Reston: AIAA, 2005.
[52] Henshaw M J C, Badcock K J, Vio G A, et al. Non-linear aeroelastic prediction for aircraft application[J]. Progress in Aerospace Sciences, 2007, 43: 65-137.
[53] Chen P C, Lee D H. Flight-loads effects on horizontal tail free-play-induced limit cycle oscillation[J]. Journal of Aircraft, 2008, 45(2): 478-485.
[54] Tang D, Dowell E H. Aeroelastic response induced by free play, Part 1: theory[J]. AIAA Journal, 2011, 49(11): 2532-2542.
[55] Tang D, Dowell E H. Aeroelastic response induced by free play, Part 2: theoretical/experimental correlation analysis[J]. AIAA Journal, 2011, 49(11): 2543-2554.
[56] Tang D, Dowell E H. Computational/experimental aeroelastic study for a horizontal-tail model with free play[J]. AIAA Journal, 2013, 51(2): 341-352.
[57] Chen P C, Sulaeman E. Nonlinear response of aeroservoelastic systems using discrete state-space approach[J]. AIAA Journal, 2003, 41(6): 1658-1666.
[58] Danowsky B, Thompson P M, Kukreja S. Nonlinear analysis of aeroservoelastic models with free play using describing functions[J]. Journal of Aircraft, 2013, 50(2): 329-336.
[59] Banavara N K, Newsom J R. Framework for aeroservoelastic analysis involving nonlinear actuators[J]. Journal of Aircraft, 2012, 49(3): 774-780.
[60] Jacobson S B, Britt R T, Dreim D R. Residual pitch oscillation (RPO) flight test and analysis on the B-2 bomber, AIAA-1998-1805[R]. Reston: AIAA, 1998.
[61] Raveh D E. Computational-fluid-dynamics-based aeroelastic analysis and structural design optimization—a researcher's perspective[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 3453-3471.
[62] Lucia D J, Beran P S, Silva W A. Reduced-order modeling: new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40: 51-117.
[63] Farhat C, Amesallem D. Recent advances in reduced-order modeling and application to nonlinear computational aeroelasticity, AIAA-2008-0562[R]. Reston: AIAA, 2008.
[64] Skujins T, Cesnik C E S. Toward an unsteady aerodynamic ROM for multiple mach regimes, AIAA-2012-1708[R]. Reston: AIAA, 2012.
[65] Lieu T, Farhat C. Adaptation of aeroelastic reduced-order models and application to an F-16 configuration[J]. AIAA Journal, 2007, 45(6): 1244-1257.
[66] Amsallem D, Farhat C. Interpolation method for adapting reduced-order models and application to aeroelasticity[J]. AIAA Journal, 2008, 46(7): 1803-1813.
[67] Amsallem D, Cortial J, Farhat C. Toward real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information[J]. AIAA Journal, 2010, 48(9): 2029-2037.
[68] Berrier B L, Re R J. A review of thrust-vectoring schemes for fighter aircraft, AIAA-1978-1023[R]. Reston: AIAA, 1978.
[69] Friehmelt H. Thrust vectoring and tailless aircraft design—review and outlook, AIAA-1996-3412[R]. Reston: AIAA, 1996.
[70] Brenner M J. Aeroservoelastic modeling and validation of a thrust-vectoring F/A-18 aircraft, NASA/TP-1996-3647[R]. Edwards: NASA Dryden Flight Research Cen-ter, 1996.
[71] Kitowski J V. Fighter airframe/propulsion integration—a general dynamics perspective, AIAA-1992-3332[R]. Reston: AIAA, 1992.
[72] Mace J, Nyberg G. Fighter airframe/ propulsion integration-a McDonnell aircraft perspective, AIAA-1992-3333[R]. Reston: AIAA, 1992.
[73] Powers S A, Robinson M R. Fighter airframe/propulsion integration: a Rockwell perspective, AIAA-1992-3334[R]. Reston: AIAA, 1992.
[74] Mishler R, Tennessee N, Wilkinson T. Emerging air-frame/propulsion integration technologies at General Electric, AIAA-1992-3335[R]. Reston: AIAA, 1992.
[75] Liston G W, Small L L. Fighter airframe/propulsion integration a Wright Laboratory perspective, AIAA-1992-3337[R]. Reston: AIAA, 1992.
[76] Schierman J D, Schmidt D K. Analysis of airframe and engine control interactions and integrated flight/propulsion control[J]. Journal of Guidance, Control and Dynamics, 1992, 15(6): 1388-1396.
[77] Frendreis S G V, Cesnik C E S. 3D simulation of flexible hypersonic vehicles, AIAA-2010-8299[R]. Reston: AIAA, 2010.
[78] Wu Z G, Chu L F, Yang C, et al. Study on aeroservoelasticity of hypersonic vehicles with thrust coupling[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1355-1363 (in Chinese). 吴志刚, 楚龙飞, 杨超, 等. 推力耦合的高超声速飞行器气动伺服弹性研究[J]. 航空学报, 2012, 33(8): 1355-1363.
[79] Baldelli D H, Lind R, Brenner M. Nonlinear aeroelastic/aeroservoelastic modeling by block-oriented identification[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 1056-1064.
[80] Zeng J, Baldelli D H, Brenner M. Novel nonlinear hammerstein model identification: application to nonlinear aeroelastic/aeroservoelastic system[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1677-1686.
[81] Kukreja S L, Brenner M J. Nonlinear aeroelastic system identification with application to experimental data[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 374-381.
[82] Kukreja S L, Brenner M J. Nonlinear black-box modeling of aeroelastic systems using structure detection: application to F/A-18 data[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 557-564.
[83] Zeng J, Kukreja S L, Moulin B. Experimental model-based aeroelastic control for flutter suppression and gust-load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5): 1377-1390.
[84] Zeng J, Kukreja S L. Flutter prediction for flight/wind-tunnel flutter test under atmospheric turbulence excitation[J]. Journal of Aircraft, 2013, 50(6): 1696-1709.
[85] Miller D N, Callafon R A, Brenner M J. Covariance-based realization algorithm for the identification of aeroelastic dynamics[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4): 1169-1177.
[86] Hammerand D C, Gariffo J M, Roughen K M. Improved computation of balancing transformations for aeroservoelastic models via time scale conversion[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 475-483.
[87] Moreno C P, Seiler P J, Balas G J. Model reduction for aeroservoelastic systems[J]. Journal of Aircraft, 2014, 51(1): 280-290.
[88] Active control systems for load alleviation, flutter suppression and ride control, AGARD-AG-175[R]. London: Technical Editing and Reproduction Ltd., 1974.
[89] Advanced Aeroservoelastic testing and data analysis, AGARD-CP-556[R]. Hull: Canada Communication Group Inc., 1995.
[90] Zazzera F B, Mantegazza P, Mazzoni G, et al. Active flutter suppression using recurrent neural networks[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(6): 1030-1036.
[91] Applebaum E, Asher J B, Weller T. Fuzzy gain scheduling for flutter suppression in an unmanned aerial vehicle[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1123-1130.
[92] Shao K, Wu Z, Yang C, et al. Design of an adaptive gust response alleviation control system: simulations and experiments[J]. Journal of Aircraft, 2010, 47(3): 1022-1029.
[93] Shao K, Yang C, Wu Z, et al. Design of a gust-response-alleviation online control system based on neuro-fuzzy theory[J]. Journal of Aircraft, 2013, 50(2): 599-609.
[94] Chen L, Wu Z G, Yang C, et al. Active control and wind tunnel test verification of multi-control surfaces wing for gust alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250-2256 (in Chinese). 陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报, 2009, 30(12): 2250-2256.
[95] Yang C, Song C, Wu Z G, et al. Active flutter suppression of airplane configuration with multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1501-1508 (in Chinese). 杨超, 宋晨, 吴志刚, 等. 多控制面机翼的全机颤振主动抑制设计[J]. 航空学报, 2010, 31(8): 1501-1508.
[96] Fuller J R. Evolution of airplane gust loads design requirements[J]. Journal of Aircraft, 1995, 32(2): 235-246.
[97] Noback R. Comparison of discrete and continuous gust methods for airplane design loads determination[J]. Journal of Aircraft, 1986, 23(3): 226-231.
[98] Eichenbaum F D. A general theory of aircraft response to three-dimensional random turbulence[J]. Journal of Aircraft, 1971, 8(5): 353-360.
[99] Tatom F B, Smith S R, Fichtl G H, et al. Simulation of atmospheric turbulent gusts and gust gradients[J]. Journal of Aircraft, 1982, 19(4): 264-271.
[100] Regan C D, Jutte C V. Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft, NASA/TM-2012-216008[R]. Edwards: NASA Dryden Flight Research Center, 2012.
[101] Crimaldi J P, Britt R T, Rodden W P. Response of B-2 aircraft to nonuniform spanwise turbulence[J]. Journal of Aircraft, 1993, 30(5): 652-659.
[102] Flomenhoft H I. Brief history of gust models for aircraft design[J]. Journal of Aircraft, 1994, 31(5): 1225-1227.
[103] Jones J G. Statistical-discrete-gust method for predicting aircraft loads and dynamic response[J]. Journal of Aircraft, 1989, 26(4): 382-392.
[104] Perry B, Potozky A S, Woods J A. NASA investigation of a claimed "overlap" between two gust response analysis methods[J]. Journal of Aircraft, 1990, 27(7): 605-611.
[105] Etkin B. Comment on "NASA investigation of a claimed 'overlap' between two gust response analysis methods"[J]. Journal of Aircraft, 1992, 29(4): 741-742.
[106] Etkin B. Turbulent wind and its effect on flight[J]. Journal of Aircraft, 1981, 18(5): 327-345.
[107] Wildschek A, Maier R, Hoffmann F, et al. Active wing load alleviation with an adaptive feedforward control algorithm, AIAA-2006-6054[R]. Reston: AIAA, 2006.
[108] Zeng J, Moulin B, Callafon R, et al. Adaptive feedforward control for gust load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 862-872.
[109] Peloubet R P, Haller R L, Bolding R M. Recent developments in the F-16 flutter suppression with active control program[J]. Journal of Aircraft, 1984, 21(9): 716-721.
[110] Livne E. Integrated aeroservoelastic optimization: status and direction[J]. Journal of Aircraft, 1999, 36(1): 122-145.
[111] Mor M, Livne E. Minimum-state unsteady aerodynamics for aeroservoelastic configuration shape optimization of flight vehicles[J]. AIAA Journal, 2005, 43(11): 2299-2308.
[112] Chen P C, Liu D D, Livne E. Unsteady aerodynamic shape sensitivities for airplane aeroservoelastic con-figuration optimization[J]. Journal of Aircraft, 2006, 43(2): 471-481.
[113] Mor M, Livne E. Sensitivities and approximations for aeroservoelastic shape optimization with gust response constraints[J]. Journal of Aircraft, 2006, 43(5): 1516-1527.
[114] Karpel M, Moulin B. Aeroservoelastic modeling and sensitivity analysis with strain actuators[J]. Journal of Aircraft, 2006, 43(4): 1235-1241.
[115] Jackson T, Livne E. Integrated aeroservoelastic design optimization of actively controlled strain-actuated flight vehicles[J]. AIAA Journal, 2014, 52(6): 1105-1123.
[116] Hanson P W. An aeroelastician's perspective of wind tunnel and flight experiences with active control of structural response and stability, NASA/TM-1984-85761[R]. Hampton: NASA Langley Research Center, 1984.
[117] Bogue R K, Jentink H W. Optical air flow measurements in flight, NASA/TP-2004-210735[R]. Edwards: NASA Dryden Flight Research Center, 2004.
[118] Soreide D, Bogue R K, Ehernberger L J, et al. Coherent lidar turbulence measurement for gust load alleviation, NASA/TM-1996-104318[R]. Edwards: NASA Dryden Flight Research Center, 1996.
[119] Inokuchi H, Tanaka H, Ando T. Development of an onboard Doppler lidar for flight safety[J]. Journal of Aircraft, 2009, 46(4): 1411-1415.
[120] Schmitt N P, Rehm W, Pistner T, et al. The AWIATOR airborne LIDAR turbulence sensor[J]. Aerospace Science and Technology, 2007, 11: 546-552.
[121] Rabadan G J, Schmitt N P, Pistner T, et al. Airborne lidar for automatic feedforward control of turbulent in-flight phenomena[J]. Journal of Aircraft, 2010, 47(2): 392-403.
[122] Mangalam S M. Flick P M, Brenner M J. Higher level aerodynamic input for aeroservoelastic control of flexible aircraft, AIAA-2007-6380[R]. Reston: AIAA, 2007.
[123] Mangalam A S, Mangalam S M, Flick P M. Unsteady aerodynamic observable for gust load alleviation and flutter suppression, AIAA-2008-7187[R]. Reston: AIAA, 2008.
[124] Mangalam A S, Brenner M J. Fly-by-feel sensing and control: aeroservoelasticity, AIAA-2014-2189[R]. Reston: AIAA, 2014.
[125] Mangalam S M. Real-time extraction of hydrodynamic flow characteristics using surface signatures[J]. IEEE Journal of Oceanic Engineering, 2004, 29(3): 622-630.
[126] Richards W L, Parker A R, Ko W L, et al. Application of fiber optic instrumentation, RTO-AG-160-V22[R]. Neuilly-sur-Seine: NATO Research and Technology Organisation, 2012.
[127] Ko W L, Richards W L, Tran V T. Displacement theories for in-flight deformed shape predictions of aerospace structures, NASA/TP-2007-214612[R]. Edwards: NASA Dryden Flight Research Center, 2007.
[128] Jutte C V, Ko W L, Stephens C A, et al. Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test, NASA/TP-2011-215975[R]. Edwards: NASA Dryden Flight Research Center, 2011.
[129] Ko W L, Fleischer V T. Improved displacement transfer functions for structure deformed shape predictions using discretely distributed surface strains, NASA/TP-2012-216060[R]. Edwards: NASA Dryden Flight Research Center, 2012.
[130] Graves S S, Burner A W, Edwards J W. Dynamic deformation measurements of an aeroelastic semispan model[J]. Journal of Aircraft, 2003, 40(5): 977-984.
[131] Burner A W, Lokos W A. Barrows D A. Aeroelastic deformation: adaptation of wind tunnel measurement concepts to full-scale vehicle flight testing, RTO-MP-AVT-124-9[R]. Neuilly-sur-Seine: NATO Research and Technology Organisation, 2005.
[132] Bisplinghoff R L, Ashley H, Halfman R L. Aeroelasticity[M]. 2nd ed. New York: Dover Publications, 1996: 695-716.
[133] Ivanco T G. Unique testing capabilities of the NASA Langley transonic dynamics tunnel, an exercise in aeroelastic scaling, AIAA-2013-2625[R]. Reston: AIAA, 2013.
[134] Friedmann P P, Presente E. Active control of flutter in compressible flow and its aeroelastic scaling[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 167-175.
[135] Potozky A S. Scaling laws applied to a modal formulation of the aeroservoelastic equations, AIAA-2002-1598[R]. Reston: AIAA, 2002.
[136] Ouellette J A, Patil M J, Kapania R K. Scaling laws for flight control development and testing in the presence of aeroservoelastic interactions, AIAA-2012-4640[R]. Reston: AIAA, 2012.
[137] Zeng J, Kingsbury D W, Ritz E, et al. GVT-based ground flutter test without wind tunnel, AIAA-2011-1942[R]. Reston: AIAA, 2011.
[138] Zeng J, Chen P C, Ritz E, et al. Ground vibration test identified structure model for flutter envelope prediction, AIAA-2012-4856[R]. Reston: AIAA, 2012.
[139] Wu Z G, Chu L F, Yuan R Z, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles[J]. Science China Technological Sciences, 2012, 55(9): 2482-2488.
[140] Xu Y T, Wu Z G, Yang C. Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1947-1957 (in Chinese). 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11): 1947-1957.
[141] Morelli E A. Flight-test experiment design for characterizing stability and control of hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 949-959.
[142] Bosworth J T, Stachowiak S J. Real-time stability margin measurements for X-38 robustness analysis, NASA/TP-2005-212856[R]. Edwards: NASA Dryden Flight Research Center, 2005.
[143] Baumann E. Tailored excitation for frequency response measurement applied to the X-43A flight vehicle, AIAA-2006-0638[R]. Reston: AIAA, 2006.
[144] Heeg J, Morelli E. Evaluation of simultaneous multisine excitation of the joined wing SensorCraft aeroelastic wind tunnel model, AIAA-2011-1959[R]. Reston: AIAA, 2011.
[145] Heeg J, Wieseman C D. System identification and uncertainty qualification using orthogonal excitations and the semi-span supersonic transport (S4T) model, AIAA-2012-1404[R]. Reston: AIAA, 2012.
[146] Cole S R, Garcia J L. Past, present, and future capabilities of the transonic dynamics tunnel from an aeroelasticity perspective, AIAA-2000-1767[R]. Reston: AIAA, 2000.
[147] Reed W H. Aeroelasticity matters: some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel, NASA/TM-83210[R]. Hampton: NASA Langley Research Center, 1981.
[148] Abbott F T, Kelly H N, Hampton K D. Investigation of propeller-power-plant autoprecession boundaries for a dynamic-aeroelastic model of a four-engine turboprop transport airplane, NASA/TN-D-1806[R]. Hampton: NASA Langley Research Center, 1963.
[149] Chen G S, Dugundji J. Experimental aeroelastic behavior of forward-swept graphite/epoxy wings with rigid-body freedom[J]. Journal of Aircraft, 1987, 24(7): 454-462.
[150] Sharma V, Reichenbach E. Development of an innovative support system for SensorCraft model, AIAA-2011-1958[R]. Reston: AIAA, 2011.
[151] Gilman J, Bennett R M. A wind-tunnel technique for measuring frequency-response functions for gust load analyses[J]. Journal of Aircraft, 1966, 3(6): 535-540.
[152] Schweiger J. MDO concepts for an European research project on active aeroelastic aircraft, AIAA-2002-5403[R]. Reston: AIAA, 2002.
[153] Kuzmina S, Ishmuratov F, Zichenkov M, et al. Integrated numerical and experimental investigations of the active/passive aeroelastic concepts on the European research aeroelastic model EuRAM[J]. ASD Journal, 2011, 2(2): 31-51.
[154] Moulin B, Karpel M. Gust loads alleviation using special control surface[J]. Journal of Aircraft, 2007, 44(1): 17-25.
[155] Ricci S, Scotti A, Malecek J, et al. Experimental investigations of a vibration suppression system for a three surface aeroelastic model, AIAA-2005-2232[R]. Reston: AIAA, 2005.
[156] Ricci S, Scotti A. Aeroelastic testing on a three surface airplane, AIAA-2006-2189[R]. Reston: AIAA, 2006.
[157] Gaspari A, Ricci S, Riccobene L, et al. Active aeroelastic control over a multisurface wing: modeling and wind-tunnel testing[J]. AIAA Journal, 2009, 47(9): 1995-2010.
[158] Ricci S, Scotti A. Aeroelastic multi-surface roll control of a three surface wind tunnel model, AIAA-2009-2511[R]. Reston: AIAA, 2009.
[159] Ricci S, Scotti A. Gust response alleviation on flexible aircraft using multi-surface control, AIAA-2010-3117[R]. Reston: AIAA, 2010.
[160] Mattaboni M, Quaranta G, Mantegazza P. Active flutter suppression for a three-surface transport aircraft by recurrent neural networks[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1295-1307.
[161] Penning K B, Zink P C, Wei P. Aeroservoelastic analysis of a sensorcraft vehicle and comparison with wind tunnel data, AIAA-2009-2405[R]. Reston: AIAA, 2009.
[162] Scott R C, Vetter T K, Penning K B, et al. Aeroservoelastic testing of free flying wind tunnel models, Part 1: a sidewall supported semispan model tested for gust load alleviation and flutter suppression, NASA/TP-2013-218051[R]. Hampton: NASA Langley Research Center, 2013.
[163] Reichenbach E, Castelluccio M, Sexton B. Joined wing sensorcraft aeroservoelastic wind tunnel test program, AIAA-2011-1956[R]. Reston: AIAA, 2011.
[164] Scott R C, Vetter T K, Penning K B, et al. Aeroservoelastic testing of free flying wind tunnel models, Part 2: a centerline supported fullspan model tested for gust load alleviation, NASA/TP-2014-218170[R]. Hampton: NASA Langley Research Center, 2014.
[165] Silva W A, Perry B, Florance J R, et al. An overview of the semi-span super-sonic transport (S4T) wind-tunnel model program, AIAA-2012-1552[R]. Reston: AIAA, 2012.
[166] Perry B, Silva W A, Florance J R, et al. Plans and status of wind-tunnel testing employing an aeroservoelastic semispan model, AIAA-2007-1770[R]. Reston: AIAA, 2007.
[167] Wieseman C, Christhilf D, Perry B. Analytical and experimental evaluation of digital control systems for the semi-span super-sonic transport (S4T) wind tunnel model, AIAA-2012-1554[R]. Reston: AIAA, 2012.
[168] Sanetrik M D, Silva W A. Computational aeroelastic analysis of the semi-span super-sonic transport (S4T) wind-tunnel model, AIAA-2012-1556[R]. Reston: AIAA, 2012.
[169] Moulin B, Ritz E, Florance J R, et al. CFD-based classic and robust aeroservoelastic control for the supersonic semispan transport wind-tunnel model, AIAA-2010-7802[R]. Reston: AIAA, 2012.
[170] Bartley-Cho J D, Henderson J A. Design and analysis of HiLDA/AEI aeroelastic wind tunnel model, AIAA-2008-7191[R]. Reston: AIAA, 2008.
[171] Florance J R, Scott R C, Keller D F, et al. Lessons in the design and characterization testing of the semi-span super-sonic transport (S4T) wind-tunnel model, AIAA-2012-1553[R]. Reston: AIAA, 2012.
[172] Gupta K K, Bach C. Computational fluid dynamics-based aeroservoelastic analysis with Hyper-X application[J]. AIAA Journal, 2007, 45(7): 1459-1471.
[173] Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese). 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.
[174] Friedmann P P, Hodges D H. Rotary-wing aeroelasticity: a historical perspective[J]. Journal of Aircraft, 2003, 40(6): 1019-1046.
[175] Friedmann P P. Rotary-wing aeroelasticity: current status and future trends[J]. AIAA Journal, 2004, 42(10): 1953-1972.
[176] Feng B, Hesse H, Palacios R, et al. Model-based aeroservoelastic design and load alleviation of large wind turbines, AIAA-2014-0521[R]. Reston: AIAA, 2014.
[177] Weisshaar T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Air-craft, 2013, 50(2): 337-353.
[178] Florance J P, Burner A W, Fleming G A, et al. Contributions of the NASA Langley research center to the DARPA/AFRL/NASA/Northrop Grumman smart wing program, AIAA-2003-1961[R]. Reston: AIAA, 2003.
[179] Nguyen N, Precup N, Urnes J, et al. Experimental investigation of a flexible wing with a variable camber continuous trailing edge flap design, AIAA-2014-2441[R]. Reston: AIAA, 2008.
[180] Precup N, Mor M, Livne E. Design, construction, and tests of an aeroelastic wind tunnel model of a variable camber continuous trailing edge flap (VCCTEF) concept wing, AIAA-2014-2442[R]. Reston: AIAA, 2014.
[181] Cavagna L, Ricci S, Travaglini L. Structural sizing, aeroelastic analysis, and optimization in aircraft conceptual design[J]. Journal of Aircraft, 2011, 48(6): 1840-1855.
[182] Quackenbush T R, Keller J D, Boschitsch A H, et al. Modeling tools for real-time aeroservoelastic simulation with nonlinear aerodynamics, AIAA-2009-6142[R]. Reston: AIAA, 2009.
[183] Chin A, Brenner M J, Pickett M D. Integration of aeroservoelastic properties into the NASA Dryden F/A-18 simulator using flight data from the active aeroelastic wing program, AIAA-2011-6206[R]. Reston: AIAA, 2011.
[184] Danowsky B P, Thompson P M, Lee D, et al. Modal isolation and damping for adaptive aeroservoelastic suppression, AIAA-2013-4743[R]. Reston: AIAA, 2013.
[185] Suh P M, Chin A W, Mavris D N. Robust modal filtering and control of the X-56A model with simulated fiber optic sensor failures, AIAA-2014-2053[R]. Reston: AIAA, 2014.
[186] Ryan J J, Bosworth J T, Burken J J, et al. Current and future research in active control of lightweight, flexible structures using the X-56 aircraft, AIAA-2014-0597[R]. Reston: AIAA, 2014.

文章导航

/