气动热

高速飞行器热结构工作时变模态参数辨识

  • 周思达 ,
  • 刘莉 ,
  • 李昱霖 ,
  • 周小陈
展开
  • 北京理工大学 宇航学院, 北京 100081
周思达 男, 博士, 讲师。主要研究方向:飞行器结构动力学、时变结构动力学建模与辨识。 Tel: 010-68918752 E-mail: zhousida@bit.edu.cn

收稿日期: 2014-07-01

  修回日期: 2014-09-23

  网络出版日期: 2014-09-26

基金资助

国家自然科学基金(11372036, 11402022); 北京理工大学基础研究基金(20120142009)

Operational identification of time-varying modal parameters for thermal structures of high-speed aerial vehicles

  • ZHOU Sida ,
  • LIU Li ,
  • LI Yulin ,
  • ZHOU Xiaochen
Expand
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2014-07-01

  Revised date: 2014-09-23

  Online published: 2014-09-26

Supported by

National Natural Science Foundation of China (11372036, 11402022); Beijing Institute of Technology Foundation for Basic Research (20120142009)

摘要

高速飞行器由于其很高的飞行速度而无可避免地受到气动加热作用的影响,进而引起结构特性的时变。采用理论或有限元方法(FEM)进行数值分析,难以获取反映结构在飞行(工作)状态下的真实模态参数。通过辨识获取高速飞行器热环境下的时变结构模态参数是一项十分具有挑战性的任务。针对此问题,引入参数化时频域的最大似然方法,对气动加热作用下的高速飞行器升力面结构的时变模态参数进行了辨识。通过模拟真实飞行状态的数值算例研究,说明参数化时频域的最大似然方法能够很好地辨识出低信噪比(SNR)情况下的模态频率和模态振型,验证了参数化时频域最大似然方法适用于具有显著时变特征的高速飞行器热结构的时变结构模态参数辨识,可为将来相关的工程研究和应用提供良好的理论支持。

本文引用格式

周思达 , 刘莉 , 李昱霖 , 周小陈 . 高速飞行器热结构工作时变模态参数辨识[J]. 航空学报, 2015 , 36(1) : 373 -380 . DOI: 10.7527/S1000-6893.2014.0267

Abstract

The high-speed aerial vehicles are unavoidably impacted by the aerodynamic heating effect due to their high speed, which may further result in the time-varying characteristics of their structures. The theoretical and finite element method (FEM)-based numerical approaches hardly acquire the real modal parameters of the in-flight (operational) aerial vehicles. Focusing on this problem, the parametric time-frequency-domain maximum likelihood method is introduced into the application of the high-speed aerial vehicles and the time-varying modal parameters are estimated by this parametric time-frequency-domain maximum likelihood method. Based on a high-fidelity simulation example, it is proved that the introduced method can identify the modal frequency and mode shapes even in the low signal noise ratio (SNR) cases and the method is suitable for the modal parameter estimation of thermal structures of high-speed aerial vehicles with notable time-varying natures, which can theoretically support the relative engineering studies and applications.

参考文献

[1] Yu Y H, Li S, Wang Y D. Study on dynamic characteristics of metallic thermal protection system with thermal environ[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(1): 171-175 (in Chinese). 余艳辉, 李书, 王远达. 热环境下的金属热防护系统的动力学特性研究[J]. 振动测试与诊断, 2013, 33(1): 171-175.

[2] Zhang L, Brincker R, Andersen P. An overview of operational modal analysis: major development and issues[C]//1st International Operational Modal Analysis Conference (IOMAC), 2005: 179-190.

[3] Wu Z Q, Cheng H, Zhang W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 334-342 (in Chinese). 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2): 334-342.

[4] Bai Y H. Research of structural modal experiment and parameter identification for high speed vehicles under flying environments[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). 白云鹤. 高速飞行器飞行环境下结构模态试验及参数识别方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

[5] Poulimenos A G, Fassois S D. Output-only stochastic identification of a time-varying structure via functional series TARMA models[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1180-1204.

[6] Zhou S D, Heylen W, Sas P, et al. Parametric modal identification of time-varying structures and the validation approach of modal parameters[J]. Mechanical Systems and Signal Processing, 2014, 47(1): 94-119.

[7] Xu X, Shi Z Y, You Q. Identification of linear time-varying systems using a wavelet-based state-space method[J]. Mechanical Systems and Signal Processing, 2012, 26(6): 91-103.

[8] Zhou S D, Heylen W, Sas P, et al. Maximum likelihood estimator of operational modal analysis for linear time-varying structures in time-frequency domain[J]. Journal of Sound and Vibration, 2014, 333(11): 2339-2358.

[9] Verboven P. Frequency-domain system identification for modal analysis[D]. Brussels: Vrije Universiteit Brussel, 2002.

[10] Zhou S D, Liu L, Yang W, et al. Matrix fraction polynomial model-based least square estimation of modal parameters for linear time-varying structures[J]. Journal of Vibration and Shock, 2014, 33(6): 118-123 (in Chinese). 周思达, 刘莉, 杨武, 等. 基于矩阵分式多项式时变结构模态参数最小二乘辨识[J]. 振动与冲击, 2014, 33(6): 118-123.

[11] Zhou S D. Study on theory and experiment of time-frequency-domain modal parameter estimation for linear time-varying mechanical structures[D]. Beijing: Beijing Institute of Technology, 2012 (in Chinese). 周思达. 线性时变结构时频域模态参数辨识理论及实验研究[D]. 北京: 北京理工大学, 2012.

[12] McNamara J J, Friedmann P P, Powell K G, et al. Aeroelastic and aerothermoelastic behavior in hypersonic flow [J]. AIAA Journal, 2008, 46(10): 2591-2610.

[13] Zhu H, Liu L, Zhou S, et al. Integrated aerodynamic thermal structure design optimization method of lifting surfaces [J]. Journal of Aircraft, 2012, 49(5): 1521-1526.

[14] Li Y L. Studies on aerodynamic-structural-thermal multidisciplinary design optimization and method of flight vehicles[D]. Beijing: Beijing Institute of Technology, 2014 (in Chinese). 李昱霖. 气动热结构多学科分析及高效优化策略研究 [D]. 北京: 北京理工大学, 2014.

[15] Roshan-Ghias A, Shamsollahi M B, Mobed M, et al. Estimation of modal parameters using bilinear joint time-frequency distributions[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2125-2136.

文章导航

/