高超声速复杂气动问题数值方法研究进展
收稿日期: 2014-08-15
修回日期: 2014-09-02
网络出版日期: 2014-09-24
基金资助
国家"863"计划
Progress in numerical simulation techniques of hypersonic aerodynamic problems
Received date: 2014-08-15
Revised date: 2014-09-02
Online published: 2014-09-24
Supported by
National High-tech Research and Development Program of China
高超声速流场具有复杂流动特征,其中真实气体效应、磁流体干扰效应和力热结构耦合效应等对气动力分析产生了重要影响。将流体力学研究扩展到分子动力学、电磁流体力学以及流固耦合等交叉学科领域,这给数值模拟方法带来了巨大挑战。针对高超声速气动力/热分析的热点问题,重点关注高温效应与低密度流动效应、磁流体干扰效应和力热结构耦合效应等,结合算例分析了相应的数值求解技术;在气动热方面主要比较了3类求解方法(纯工程方法、纯数值方法和基于Prandtl边界层理论的方法),并给出了相应算例;对于气动力/热/结构耦合问题,从耦合模型及耦合计算方法两方面开展了分析。最后指出了高超声速复杂气动问题数值求解技术未来需重点关注的几个方面。
王江峰 , 伍贻兆 , 季卫栋 , 樊孝峰 , 赵法明 , 吕侦军 . 高超声速复杂气动问题数值方法研究进展[J]. 航空学报, 2015 , 36(1) : 159 -175 . DOI: 10.7527/S1000-6893.2014.0214
Hypersonic flow field has complex flow characteristics in which real gas effects, magnetic fluid interference effects and fluid/thermal/structural coupling effects have an important impact on the aerodynamic force. They extend fluid dynamics to molecular dynamics, electromagnetic fluid dynamics, fluid/structure interaction and other interdisciplinary fields, which have brought great challenges to the numerical simulation methods. Aimed at hot issues of hypersonic aerodynamic force and aerodynamic heat, high-temperature effects, low-density flow effect, magnetic fluid interference effect and fluid/thermal/structural coupling effect have been significantly emphasized. Several examples and the corresponding numerical solution techniques are given in this paper. Three methods of aerodynamic heating are compared, i.e., pure engineering method, pure numerical method and Prandtl boundary layer theory-based method. For fluid/thermal/structural coupling problem, analyses are carried out in two aspects, i.e., coupling model and coupling calculation method. Finally, several problems of numerical simulation technologies which need to be emphasized in the future are figured out.
[1] Anderson J D. Hypersonic and high temperature gas dynamics[M]. Reston: AIAA, 2000: 13-23.
[2] Bian Y G, Xu L G. Aerothermodynamics[M]. Hefei: Press of University of Science and Technology of China, 1997: 2-8 (in Chinese). 卞荫贵, 徐立功. 气动热力学[M]. 合肥: 中国科学技术大学出版社, 1997: 2-8.
[3] Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, AIAA-1981-1259[R]. Reston: AIAA, 1981.
[4] Mavriplis D J, Jameson A. Multigrid solution of the Navier-Stokes equations on triangular meshes[J]. AIAA Journal, 1990, 28(8): 1415-1425.
[5] Briley W R, McDonald H. Solution of the multidimensional compressible Navier-Stokes equations by a generalized implicit method[J]. Journal of Computational Physics, 1977, 24(4): 372-397.
[6] Jameson A, Turkel E. Implicit schemes and LU-decompositions[J]. Mathematics of Computation, 1981, 37(156): 385-397.
[7] Yoon S, Jameson A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026.
[8] Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869.
[9] van Leer B. Flux-vector splitting for the Euler equations[J]. Lecture Notes on Physics, 1982, 170: 507-512.
[10] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[11] Liou M S, Steffen C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1): 23-39.
[12] Liou M S. Ten years in the making: AUSM-family, AIAA-2001-2521[R]. Reston: AIAA, 2001.
[13] Jameson A. Analysis and design of numerical schemes for gas dynamics, 1: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence[J]. International Journal of Computational Fluid Dynamics, 1995, 4(3): 171-218.
[14] Zhang H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2): 143-165 (in Chinese). 张涵信. 无波动, 无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2): 143-165.
[15] Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2): 453-480.
[16] Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578.
[17] Cebeci T, Smith A M O. Analysis of turbulent boundary layers[M].New York: Academic Press, Inc., 1974: 164-187.
[18] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows, AIAA-1978-0257[R]. Reston: AIAA, 1978.
[19] Spalart P R, Allmaras S R. A one equation turbulence model for aerodinamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.
[20] Baldwin B S, Barth T J. A one-equation turbulence transport model for high Reynolds number wall-bounded flows, NASA TM 102847[R]. Washington, D.C.: NASA, 1990.
[21] Jones W P, Launder B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314.
[22] Liu J Y. An improverd SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica,2012, 33(12): 2192-2201 (in Chinese). 刘景源. SST 湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12): 2192-2201.
[23] Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310.
[24] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[25] Blottner F G. Nonequilibrium laminar boundary-layer flow of ionized air[J]. AIAA Journal, 1964, 2(11): 1921-1927.
[26] Zhang X H, Wu Y Z, Wang J F. Numerical simulation of thermo-chemical non-equilibrium hypersonic flows using HLLE+ scheme[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(2): 154-158 (in Chinese). 张向洪, 伍贻兆, 王江峰. HLLE+ 格式在高超声速热化学非平衡流场中的应用[J]. 南京航空航天大学学报, 2011, 43(2): 154-158.
[27] Liu C, Wang J F, Wu Y Z. Numerical simulation of multi-component reacting flows using AUFS scheme[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 40(2): 191-194 (in Chinese). 刘晨, 王江峰, 伍贻兆. AUFS格式在多组分反应流场模拟中的应用[J]. 南京航空航天大学学报, 2006, 40(2): 191-194.
[28] Liu J, Liu W, Zeng M, et al. Numerical simulation of 3D hypersonic thermochemical non-equilibrium flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(6): 730-734 (in Chinese). 柳军, 刘伟, 曾明, 等. 高超声速三维热化学非平衡流场的数值模拟[J]. 力学学报, 2003, 35(6): 730-734.
[29] Herzberg G. Molecular spectra and molecular structure, Vol.1[M]. New York: Reitell Press, 1957: 13-27.
[30] Moore C E. Atomic energy levels as derived from the analyses of optical spectra[M]. Washington, D. C.: US Government Printing Office, 1971: 65-98.
[31] Hansen C F, Heims S P. A review of the thermodynamic, transport, and chemical reaction rate properties of high-temperature air[M]. [s.l.]: National Advisory Committee for Aeronautics, 1958: 105-112.
[32] Gupta R N, Yos J M, Thompson R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K, NASA-TM-101528[R]. Hampton, VA: Langley Research Center, 1989.
[33] Eklund D R, Stouffer S D, Northam G B. Study of a supersonic combustor employing swept ramp fuel injectors[J]. Journal of Propulsion and Power, 1997, 13(6): 697-704.
[34] Clutter J K, Mikolaitis D W, Shyy W. Effect of reaction mechanism in shock-induced combustion simulations, AIAA-1998-0274[R]. Reston: AIAA, 1998.
[35] Ingram D M, Jiang B, Causon D M. On methane combustion in a nozzle geometry using a reduced reaction kinetics model, AIAA-1996-0820[R]. Reston: AIAA, 1996.
[36] Liu C, Wang J F, Wu Y Z. Study on the abnormity of the axial-symmetric boundary in simulation of shock-induced combustion[J]. Journal of Aerospace Power, 2009, 24(6): 1219-1228 (in Chinese). 刘晨, 王江峰, 伍贻兆. 激波诱导燃烧模拟中轴对称边界条件数值异常研究[J]. 航空动力学报, 2009, 24(6): 1219-1228.
[37] Bird G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963(6): 1518-1519.
[38] Bird G A. Application of the DSMC method to the full shuttle geometry, AIAA-1990-1692[R]. Reston: AIAA, 1990.
[39] Shen Q. Aerodynamics of rarefied gases[M]. Beijing: National Defense Industry Press, 2003: 17-23(in Chinese). 沈青. 稀薄气体动力学[M]. 北京:国防工业出版社,2003: 17-23.
[40] Fan J. Rarefied gas dynamics: advances and applications[J]. Advance in Mechanics, 2013, 43(2): 185-201 (in Chinese). 樊菁. 稀薄气体动力学:进展与应用[J]. 力学进展, 2013, 43(2): 185-201.
[41] Fan J, Liu H L, Jiang J Z, et al. Analysis and simulation of discharging residual rocket propellants in orbit[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2): 129-139 (in Chinese). 樊菁, 刘宏立, 蒋建政, 等. 火箭剩余推进剂排放过程的分析与模拟[J]. 力学学报, 2004, 36(2): 129-139.
[42] Fan J. A generalized soft sphere model for Monte Carlo simulations[J]. Physics of Fluids, 2002, 14: 4399-4405.
[43] Li Z H, Li Z H, Li H Y, et al. Research on CFD/DSMC hybrid numerical method in rarefied flows[J]. Acta Aerodynamica Sinica, 2013, 31(3): 282-287 (in Chinese). 李中华, 李志辉, 李海燕, 等. 过渡流区Navier-Stokes/DSMC耦合计算研究[J].空气动力学学报, 2013, 31(3):282-287.
[44] Wang X D. DSMC method on unstructured grids for hypersonic rarefied gas flow and its parallelization[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese). 王学德. 高超声速稀薄气流非结构网格 DSMC 及并行算法研究[D]. 南京: 南京航空航天大学, 2006.
[45] Wang X D, Wu Y Z, Xiao J. Unstructured DSMC method and application in three dimensional thermochemical nonequilibrium flow[J]. Journal of Astronautics, 2006, 27(12): 126-131 (in Chinese). 王学德, 伍贻兆, 夏健. 三维热化学非平衡流动非结构网格 DSMC 方法及其应用[J]. 宇航学报, 2006,27(12): 126-131.
[46] Pan Y, Wang J F, Wu Y Z. Numerical simulation of hypersonic viscous MHD flows based on unstructured meshes[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(5): 555-559 (in Chinese). 潘勇, 王江峰, 伍贻兆. 非结构网格的高超声速粘性MHD流场数值模拟[J]. 南京航空航天大学学报, 2007, 39(5): 555-559.
[47] Zhang X H. Numerical simulation for hypersonic flowfield with electromagnetic interference[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). 张向洪. 高超声速流场电磁干扰数值模拟研究[D]. 南京: 南京航空航天大学, 2013.
[48] Brackbill J U, Barnes D C. The effect of nonzero on the numerical solution of the magnetohydrodynamic equations[J]. Journal of Computational Physics, 1980, 35: 426-430.
[49] Evans C R, Hawley J F. Simulation of magnetohydrodynamic flows: a constrained transport method[J]. The Astrophysical Journal, 1988, 332: 659-677.
[50] Powell K G, Roe P L, Myong R S. An upwind scheme for magnetohydrodynamics, AIAA-1995-1704[R]. Reston: AIAA, 1995.
[51] Dedner A, Kemm F, Kroner D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. Journal of Computational Physics, 2002, 175: 645-673.
[52] Pan Y. Numerical methods for hypersonic flowfield with magnetic interference[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). 潘勇. 高超声速流场磁场干扰效应数值模拟方法研究[D]. 南京: 南京航空航天大学, 2007.
[53] Tian Z Y, Zhang K P, Ding G H, et al. Spurious magnetic field divergence cleaning in magnetohydrodynamic simulation[J]. Chinese Journal of Computational Physics, 2009, 26(1): 78-86 (in Chinese). 田正雨, 张康平, 丁国昊,等. MHD数值模拟中清除伪磁场散度方法[J]. 计算物理, 2009, 26(1): 78-86.
[54] de Jarnette F R, Hamilton H H. Inviscid surface streamlines and heat transfer on shuttle-type configurations[J]. Journal of Spacecraft and Rockets, 1973, 10(5): 314-321.
[55] Engel C D, Praharaj S C. MINIVER upgrade for the AVID system. Volume 1: LANMIN user’s manual, NASA CR-172212[R]. Washington, D.C.: NASA, 1983.
[56] Zoby E V, Simmonds A L. Engineering flowfield method with angle-of-attack applications[J]. Journal of Spacecraft and Rockets, 1985, 22(4): 398-404.
[57] Li J L, Tang Q G, Huo L, et al. The rapid engineering aero-heating calculation method for complex shaped hypersonic vehicles[J]. Journal of National University of Defense Technology, 2012, 34(6): 89-93 (in Chinese). 李建林, 唐乾刚, 霍霖, 等. 复杂外形高超声速飞行器气动热快速工程估算[J]. 国防科学技术大学学报, 2012, 34(6): 89-93.
[58] Murray A L, Lewis C H. Hypersonic three-dimensional viscous shock-layer flows over blunt bodies[J]. AIAA Journal, 1978, 16(12): 1279-1286.
[59] Helliwell W S, Dickinson R P, Lubard S C. Viscous flow over arbitrary geometries at high angle of attack[J]. AIAA Journal, 1981, 19(2): 191-197.
[60] Tannehill J C, Buelow P E, Ievalts J O, et al. Three-dimensional upwind parabolized Navier-Stokes code for real gasflows[J]. Journal of Spacecraft and Rockets, 1990, 27(2): 150-159.
[61] Gnoffo P. Upwind-biased, point-implicit relaxation strategies for viscous, hypersonic flows, AIAA-1989-1972[R]. Reston: AIAA, 1989.
[62] Huang F, Zhang L, Cheng X L, et al. Effects of continuum breakdown on aerothermodynamics[J]. Journal of Astronautics, 2012, 33(2): 153-159 (in Chinese). 黄飞, 张亮, 程晓丽, 等. 稀薄气体效应对尖前缘气动热特性的影响研究[J]. 宇航学报, 2012, 33(2): 153-159.
[63] Hamilton H H, Greene F A, DeJarnette F R. Approximate method for calculating heating rates on three-dimensional vehicles[J]. Journal of Apacecraft and Rockets, 1994, 31(3): 345-354.
[64] Pan S, Feng D H, Ding G H, et al. Grid dependency and convergence of hypersonic aerothermal simulation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 493-499 (in Chinese). 潘沙, 冯定华, 丁国昊, 等. 气动热数值模拟中的网格相关性及收敛[J]. 航空学报, 2010, 31(3): 493-499.
[65] Yan C, Yu J J, Li J Z, Scheme effect and grid dependency in CFD compulations of heating transfer[J]. Acta Aerodynamica Sinica, 2006, 24(1): 125-130 (in Chinese). 阎超, 禹建军, 李君哲. 热流 CFD 计算中格式和网格效应若干问题研究[J]. 空气动力学学报, 2006, 24(1): 125-130.
[66] Li J Z, Yan C, Ke L, et al. Research on scheme effect of computational fluid dynamics in aerothermal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 1022-1025 (in Chinese). 李君哲, 阎超, 柯伦, 等. 气动热CFD计算的格式效应研究[J]. 北京航空航天大学学报, 2003, 29(11): 1022-1025.
[67] Lv L L, Zhang W W, Ye Z Y. Predicting heating distributions for hypersonic reentry bodies[J]. Chinese Journal of Applied Mechanics, 2006, 23(2): 259-262(in Chinese). 吕丽丽, 张伟伟, 叶正寅. 高超声速再入体表面热流计算[J]. 应用力学学报, 2006, 23(2): 259-262.
[68] Ji W D, Wang J F. Calculating method of aerodynamic heating for hypersonic aircrafts[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(3): 327-342.
[69] Cai G B, Xu D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012: 34-45 (in Chinese). 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012: 34-45.
[70] Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese). 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.
[71] Loehner R, Yang C, Cerbal J, er al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids, AIAA-1998-2419[R]. Reston: AIAA, 1998.
[72] Thornton E, Dechaumphai P. Coupled flow, thermal and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11): 1052-1058.
[73] Wu Z G, Hui J P, Yang C. Hypersonic aerothermoelastic analysis of wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3): 270-273 (in Chinese). 吴志刚, 惠俊鹏, 杨超. 高超声速下翼面的热颤振工程分析[J]. 北京航空航天大学学报, 2005, 31(3): 270-273.
[74] Zhang W W, Xia W, Ye Z Y. A numerical method for hypersonic aerothermoelasticity[J]. Engineering Mechanics, 2006, 23(2): 41-46 (in Chinese). 张伟伟, 夏巍, 叶正寅. 一种高超音速热气动弹性数值研究方法[J]. 工程力学, 2006, 23(2): 41-46.
/
〈 | 〉 |