流体力学与飞行力学

飞翼布局无人机微射流控制参数影响数值模拟

  • 许晓平 ,
  • 周洲
展开
  • 西北工业大学 无人机特种技术国家重点实验室, 陕西 西安 710072
周洲 女, 博士, 教授, 博士生导师.主要研究方向: 飞行器总体、气动设计等. E-mail: zhouzhou@nwpu.edu.cn

收稿日期: 2014-03-31

  修回日期: 2014-05-14

  网络出版日期: 2014-09-24

基金资助

国家自然科学基金(11302178,11202162);航空科学基金(2013ZA53002);西北工业大学基础研究基金(JCT20130110)

Numerical Simulation of Micro-jet Flow Control Parameters for Flying-wing UAV

  • XU Xiaoping ,
  • ZHOU Zhou
Expand
  • National Key Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-03-31

  Revised date: 2014-05-14

  Online published: 2014-09-24

Supported by

National Natural Science Foundation of China(11302178, 11202162); Aeronautical Science Foundation of China (2013ZA53002); NPU Foundation for Fundamental Research (JCT20130110)

摘要

开展了微射流控制参数对飞翼布局无人机(UAV)气动特性影响规律的研究.建立的流动控制模型及数值模拟技术经过了TAU0015翼型流动控制试验校核.设计了布置于飞行器前缘和1%c处的8套阵列式微射流控制方案,研究了微射流技术的气动控制效果,分析了典型流动控制参数对控制效能的影响规律.研究结果表明:微射流技术可以有效改善飞翼布局UAV大迎角下的流动分离现象,升力系数增幅达25%,布置于飞行器前缘和内翼段的射流激励器控制效果较优,较大的射流动量系数对流场影响较大,最优的无量纲射流频率为1.

本文引用格式

许晓平 , 周洲 . 飞翼布局无人机微射流控制参数影响数值模拟[J]. 航空学报, 2014 , 35(12) : 3293 -3303 . DOI: 10.7527/S1000-6893.2014.0100

Abstract

The control effectiveness of typical micro-jet flow control parameters on the aerodynamic performance of the flying-wing unmanned aerial vehicle (UAV) is investigated by numerical simulation. Validation is conducted with TAU0015 airfoil experimental data for flow control model and numerical method. The flow control model is tested with eight arrays of synthetic jet actuators embedded in the leading edge and 1%c along the wing span. The change in the control effect is examined and the control efficiency of control parameters is performed. The numerical results of the UAV aerodynamic coefficients reveal lift coefficient increments over the baseline uncontrolled case as large as 25%. The actuators arranged in leading edge and inboard of UAV are found to be more effective at separation control, the larger jet momentum coefficient are more pronounced and the most effective jet frequency seemed to be one, which indicate that correct control parameter is critical to the design of an efficient flow separation control scheme.

参考文献

[1] Dmitriev V G, Denisov V E, Gurevich B I, et al. The flying wing concept - chances and risks, AIAA-2003-2887[R]. Reston: AIAA, 2003.

[2] Luo Z B, Xia Z X. Advances in synthetic jet technology and application in flow control[J]. Advances in Mechanics, 2005, 35(2): 221-234. (in Chinese) 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221-234.

[3] Bewley T R. Flow control-new challenges for a new renaissance[J]. Process in Aerospace Science, 2001, 37: 21-58.

[4] Amitay M, Smith D R, Kibens V, et al. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators[J]. AIAA Journal, 2001, 39(3): 361-370.

[5] Seifert A, Darabi A, Wygnanski I. Delay of airfoil stall by periodic excitation[J]. Journal of Aircraft, 1996, 33(4): 691-698.

[6] Wygnanski I, Seifert A. The control of separation by periodic oscillations, AIAA-1994-2608[R]. Reston: AIAA, 1994.

[7] Han Z H, Qiao Z D, Song W P. Numerical simulation of active flow control to airfoil stall using local synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1040-1046. (in Chinese) 韩忠华, 乔志德, 宋文萍. 零质量射流推迟翼型失速的数值模拟[J]. 航空学报, 2007, 28(5): 1040-1046.

[8] Zhang P F, Wang J J. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in recirculation region[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(4): 443-446. (in Chinese) 张攀峰, 王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报, 2008, 34(4): 443-446.

[9] Parekh D E, Williams S P, Amitay M, et al. Active flow control on the stingray UAV: aerodynamic forces and moments, AIAA-2003-4002[R]. Reston: AIAA, 2003.

[10] Amitay M, Washburn A E, Anders S G, et al. Active flow control on the stingray UAV: transient behavior, AIAA-2003-4001[R]. Reston: AIAA, 2003.

[11] Washburn A E, Amitay M. Active flow control on the stingray UAV: physical mechanisms, AIAA-2004-0745[R]. Reston: AIAA, 2004.

[12] Kondor S, Parekh D E, Washburn A E, et al. Investigations of synthetic jet aerodynamic control modulation on a fullscale UAV, AIAA-2005-1051[R]. Reston: AIAA, 2005.

[13] Kong Y N, Wang L X, Wang G X, et al. Lateral inject active flow control based on low aspect ratio flying wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 806-811. (in Chinese) 孔轶男, 王立新, 王光学, 等. 小展弦比飞翼布局飞机横向涡流控制气动机理[J]. 航空学报, 2009, 30(5): 806-811.

[14] Du H, Shi Z W, Ni F Y, et al. Aerodynamic moment control of flying wing vehicle using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2038-2046. (in Chinese) 杜海, 史志伟, 倪芳原, 等. 基于等离子体激励的飞翼布局飞行器气动力矩控制[J]. 航空学报, 2013, 34(9): 2038-2046.

[15] Mahmood G M, Smith D R. Proportional aerodynamic control of a UAV wing model using synthetic jets, AIAA-2007-3851[R]. Reston: AIAA, 2007.

[16] Yazzie R, Truman C R, Salari K. Prediction of oscillatory flow excitation at the leading edge of a modified NACA 0015 airfoil, AIAA-2004-0749[R]. Reston: AIAA, 2004.

[17] Joslin R D, Viken S A. Aerodynamic performance of an active flow control configuration using unstructured-grid RANS, AIAA-2001-16161[R]. Reston: AIAA, 2001.

[18] Farnsworth J A N, Vaccaro J C, Amitay M. Aerodynamic performance modification of the stingray UAV at low angles of attack, AIAA-2007-4426[R]. Reston: AIAA, 2007.

[19] Seifert A, David S, Fono I, et al. Roll control via active flow control: from concept to flight[J]. Journal of Aircraft, 2010, 47(3): 864-874.

[20] Greenblatt D, Wygnanski I. Control of separation by periodic oscillations[J]. Process in Aerospace Science, 2000, 37(7): 487-545.

文章导航

/