高超进气道的反设计和阻力特性分析

  • 张堃元
展开
  • 南京航空航天大学

收稿日期: 2014-09-11

  修回日期: 2014-09-17

  网络出版日期: 2014-09-17

基金资助

基于联合决策与估计的高频超视距雷达信息处理与融合(国家自然基金重点项目)

Reverse Design and Drag Characteristic of Hypersonic Inlet

  • ZHANG Kun-Yuan
Expand

Received date: 2014-09-11

  Revised date: 2014-09-17

  Online published: 2014-09-17

Supported by

National Natural Science Foundation of China

摘要

提出了曲面激波压缩系统的新概念,即利用特殊设计的楔形曲面压缩面或空间曲面压缩面,产生一系列与前缘弱激波相互交汇或叠加的压缩波系,从而使前缘激波弯曲,形成特殊的弯曲激波,它与波后的等熵压缩波来共同完成对气流的压缩。在此基础上实现了由给定出口气动参数的超声速内流道反设计,实现了由指定压缩面压力分布p(s)、指定压缩面马赫数分布Ma(s)要求的型面反设计,实现了由指定激波波面W(s)的压缩型面反设计。研究证明,曲面压缩-曲面激波压缩系统具有良好的综合气动性能,为高性能高超声速进气系统的气动设计提供了一种全新的设计方法。 减阻是高超声速进气道面临的另一难题,本文运用基本气动理论分析了高超声速进气道可能的最小阻力和减阻设计方向,为飞行器总体设计、动力系统总体设计和进气道减阻研究提供了科学依据。

本文引用格式

张堃元 . 高超进气道的反设计和阻力特性分析[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2014.0240

Abstract

This paper proposed the new concept of curved shock compression system, in which specially designed 2D or 3D curved compression surface is used. The leading shock wave would be curved due to its interaction with isentropic compression waves near the compression surface, and free stream is compressed by the curved shock wave together with the isentropic waves. Based on this concept, methods of: reverse designing supersonic internal flow path according to assigned outflow parameters, reverse designing compression surface according to pressure distribution p(s) or Mach number distribution Ma(s) along the surface, and reverse designing surface according to shock wave shape W(s) are established. The curved shock compression has a good comprehensive performance as shown in the investigation, and represents a brand-new approach for the design of hypersonic propulsion compression system. Drag reduction is another challenge for hypersonic inlet design. Based on gas dynamics fundamentals, the minimum possible value of inlet drag is derived determined and drag reduction principles are proposed, which could be scientific basis for future flight vehicle designing, propulsion system designing and inlet drag reduction investigation.

参考文献

[1] Anderson J D. A history of aerodynamics: and its impact on flying machines[M]. Cambridge University Press, 1998.
[2] Connors J F, Meyer R C. Design criteria for axisymmetric and two-dimensional supersonic inlets and exits[R]. NACA-TN-3589, 1956.
[3] Trexler C A. Performance of an inlet for an integrated scramjet concept[J].Journal of Aircraft. 1974, 11(9): 589-591.
[4] Busemann A. Die achsensymmetrische kegelige überschallstr?mung[J]. Luftfahrtforschung. 1942, 19(4): 137-144.
[5] M?lder S, Szpiro E J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets. 1966, 3(8): 1303-1304.
[6] Smart M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power. 1999, 15(3): 408-416.
[7] Oswatitsch K. Pressure recovery for missiles with reaction propulsion at high supersonic speeds (the efficiency of shock diffusers)[R]. NACA-TM-1140, 1947.
[8] Zhang K, Meier G E A. Using R.C. method to study optimum compression surface under non-uniform 2-D supersonic flow condition[R]. AIAA 94-1838, 1994.
[9] 居燕. 弯曲激波压缩面设计及试验研究[D]. 南京: 南京航空航天大学, 2005.
Ju Y. Design of curved shock compression surface and experimental investigation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005. (in Chinese)
[10] 潘瑾,张堃元,金志光. 弯曲激波压缩型面的设计及数值分析[J]. 推进技术. 2008, 29(4): 438-442.
Pan J, Zhang K, Jin Z. Design and numerical investigation of curved shock compression surface[J]. Journal of Propulsion Technology. 2008, 29(4): 438-442. (in Chinese)
[11] 金志光,张堃元. 二维非常规压缩型面超/高超声速进气道的设计概念[J]. 推进技术. 2004, 25(3): 226-229.
Jin Z, Zhang K. Concept of a two-dimensional supersonic/hypersonic inlet with a non-conventional compression wall[J]. Journal of Propulsion Technology. 2004, 25(3): 226-229. (in Chinese)
[12] 南向军,张堃元,金志光,等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报. 2011, 32(6): 988-996.
Nan X, Zhang K, Jin Z, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica ET Astronautica Sinica. 2011, 32(6): 988-996. (in Chinese)
[13] 方兴军. 控制出口速度分布的超声速内流通道反设计[D]. 南京: 南京航空航天大学, 2012.
Fang X. Inverse design of supersonic internal flow path based on given outflow velocity profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[14] 高雄. 超声速非均匀流模拟方法研究[D]. 南京: 南京航空航天大学, 2009.
Gao X. Investigation of supersonic non-uniform flow simulation method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
[15] 张林,张堃元,王磊,等. 基于等熵压缩面型面坐标变换的二维曲面压缩面研究[J]. 航空动力学报(待发表).
Zhang L, Zhang K, Wang L, et al. Computational investigation of a two-dimensional curved compression system with isentropic surface coordinate transformation[J]. Journal of Aerospace Power (in press). (in Chinese)
[16] 刘燚,张堃元,方兴军,等. 控制出口马赫数分布的高超声速压缩通道反设计[C]//第五届全国高超声速科学技术会议. 桂林: 中国力学学会, 2012.
Liu Y, Zhang K, Fang X, et al. Inverse design method of hypersonic air flow passage for generating controllable Mach number distribution profile[C]//The 5th National Conference on Hypersonic Science and Technology. Guilin: Chinese Society of Theoretical and Applied Mechanics, 2012. (in Chinese)
[17] 钟启涛,张堃元,庞丽娜,等. 出口马赫数均匀的高超二元进气道双重反设计[J]. 推进技术(待发表).
Zhong Q, Zhang K, Pang L, et al. Double inverse design of the hypersonic 2-D inlet with uniform exit Mach number distribution[J]. Journal of Propulsion Technology (in press). (in Chinese)
[18] Pan J, Zhang K. Experimental and numerical investigation of a curved compression system designed on constant pressure gradient[R]. AIAA 2009-5270, 2009.
[19] 潘瑾,金峰,张堃元. 非均匀来流下等压力梯度曲面压缩系统的试验研究[J]. 推进技术. 2013, 34(12): 1593-1600.
Pan J, Jin F, Zhang K. Experimental investigation of constant pressure gradient curved compression system in Non-Uniform inflow[J]. Journal of Propulsion Technology. 2013, 34(12): 1593-1600. (in Chinese)
[20] Wang L, Zhang K, Nan X, et al. Optimization and experimental investigation of 2-D hypersonic curved shock[R]. AIAA 2012-5959, 2012.
[21] 向有志. 高超轴对称曲面压缩系统的初步研究[D]. 南京: 南京航空航天大学, 2010.
Xiang Y. Preliminary research on hypersonic axisymmetric curved compression system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
[22] 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京: 南京航空航天大学, 2012.
Nan X. Investigation on design methodology of hypersonic inward turning inlets with controlled pressure rise law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[23] 潘瑾. 超声/高超声速非均匀来流下曲面压缩系统研究[D]. 南京: 南京航空航天大学, 2011.
Pan J. Research on curved compression system in supersonic/hypersoinc non-uniform inflow[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
[24] 南向军,张堃元,金志光. 采用新型基准流场的高超内收缩进气道试验研究[J]. 航空学报. 2014, 35(01): 90-96.
Nan X, Zhang K, Jin Z. Experimental study of hypersonic inward turning inlets with innovative basic flowfield[J]. Acta Aeronautica ET Astronautica Sinica. 2014, 35(01): 90-96. (in Chinese)
[25] 王磊,张堃元,向有志,等. 高超声速二元弯曲激波压缩面反设计方法的参数化研究[J]. 南京航空航天大学学报. 2013, 45(4): 441-446.
Wang L, Zhang K, Xiang Y, et al. Parameter analysis of reverse design method of 2-D hypersonic curved shock compression surface[J]. Journal of Nanjing University of Aeronautics & Astronautics. 2013, 45(4): 441-446. (in Chinese)
[26] 李永洲,张堃元,南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报. 2012, 27(11): 2484-2491.
Li Y, Zhang K, Nan X. Design of hypersonic inward turning inlets base on concept of controllable Mach number distribution[J]. Journal of Aerospace Power. 2012, 27(11): 2484-2491. (in Chinese)
[27] 张林,张堃元,王磊,等. 基于壁面马赫数梯度的高超声速弯曲激波二维进气道数值研究[J]. 航空动力学报. 2013, 28(4): 752-758.
Zhang L, Zhang K, Wang L, et al. Computational investigation of hypersonic curved shock two-dimensional inlet with compression surface constant Mach number gradient[J]. Journal of Aerospace Power. 2013, 28(4): 752-758. (in Chinese)
[28] 朱伟. 基于马赫数分布规律的高超矩形转圆内转式进气道设计研究[D]. 南京: 南京航空航天大学, 2012.
Zhu W. Investigation on hypersonic rectangular to circle shape transition inward turning inlets with controlled Mach number distributions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[29] 翟永玺. 基于马赫数分布规律的二元高超弯曲激波进气道设计研究[D]. 南京: 南京航空航天大学, 2014.
Zhai Y. Investigation of two-dimensional hypersonic curved shock inlet design based on surface Mach Number distribution[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
[30] 周宏奎. 低阻二元高超声速进气道设计方法研究[D]. 南京: 南京航空航天大学, 2010.
Zhou H. Study on devisal for low drag two-dimensional hypersonic inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
[31] 周硕. 高超压缩面气动反设计规律研究[D]. 南京: 南京航空航天大学, 2012.
Zhou S. Study on inverse design law of hypersonic compression surface[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[32] 李永洲,张堃元,朱伟,等. 两道入射激波的变中心体基准流场研究[J]. 航空动力学报(待发表).
Li Y, Zhang K, Zhu W, et al. Design methods for inward turning basic flowfield with controlled center body and two incident shocks[J]. Journal of Aerospace Power (in press). (in Chinese)
[33] 郭善广,王振国,赵玉新,等. 高超声速二元进气道前体曲线激波逆向设计研究[J]. 航空学报. 2014, 35(5): 1246-1256.
Guo S, Wang Z, Zhao Y, et al. Inverse design of the fore-body curved shock wave of the hypersonic planar inlet[J]. Acta Aeronautica ET Astronautica Sinica. 2014, 35(5): 1246-1256. (in Chinese)
[34] Zhang L, Zhang K. Numerical investigation of hypersonic curved shock two-dimensional inlet designed on the wall constant Mach number gradient[R]. AIAA 2012-4065, 2012.
[35] 张林,张堃元,王磊,等. 非均匀来流对新型高超弯曲激波二维进气道的影响[J]. 推进技术. 2012, 33(3): 338-345.
Zhang L, Zhang K, Wang L, et al. Investigation on a new hypersonic curved shock 2-dimensional inlet under non-uniform coming flow[J]. Journal of Propulsion Technology. 2012, 33(3): 338-345. (in Chinese)
[36] 李大进,高雄,朱守梅. 弯曲激波压缩曲面的二元高超声速进气道研究[J]. 推进技术. 2013, 34(11): 1441-1447.
Li D, Gao X, Zhu S. Study of hypersonic 2D-inlet with leading curved-shock wave compression ramp[J]. Journal of Propulsion Technology. 2013, 34(11): 1441-1447. (in Chinese)
[37] 高雄,李大进,朱守梅,等. 高超二元曲面压缩进气道前缘激波特性分析[J]. 推进技术. 2013, 34(9): 1153-1157.
Gao X, Li D, Zhu S, et al. Analysis of leading edge shock on hypersonic curved ramp two-dimensional inlet[J]. Journal of Propulsion Technology. 2013, 34(9): 1153-1157. (in Chinese)
[38] 王磊,张堃元,金志光,等. 基于壁面压力分布的二元高超声速弯曲激波压缩进气道反设计与优化方法[J]. 推进技术. 2013, 34(12): 1601-1605.
Wang L, Zhang K, Jin Z, et al. Reverse design and optimization of 2D hypersonic curved shock compression inlet based on given wall pressure distribution[J]. Journal of Propulsion Technology. 2013, 34(12): 1601-1605. (in Chinese)
[39] 李永洲,张堃元,王磊,等. 基于二维曲面基准流场的流线追踪高超声速进气道设计[J]. 航空动力学报. 2012, 27(9): 2004-2012.
Li Y, Zhang K, Wang L, et al. Design of streamline-traced hypersonic inlets based on two-dimensional curved surface basic fiowfield[J]. Journal of Aerospace Power. 2012, 27(9): 2004-2012. (in Chinese)
[40] 吴颖川,贺元元,余安远,等. 展向截断曲面乘波压缩进气道气动布局[J]. 航空动力学报. 2013, 28(7): 1570-1575.
Wu Y, He Y, Yu A, et al. Aerodynamic layout of spanwise truncated curved waverider compression inlet[J]. Journal of Aerospace Power. 2013, 28(7): 1570-1575. (in Chinese)
[41] 杨国亮. 曲面侧板压缩的侧压式进气道研究[D]. 南京: 南京航空航天大学, 2006.
Study of sidewall compression inlet with curved sidewall[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)
[42] 贾柯. 高超声速侧压式进气道变几何方案研究[D]. 南京: 南京航空航天大学, 2012.
Jia K. The investigation on a hypersonic sidewall-compression scramjet inlet with varied geometry[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[43] Zhang L, Zhang K, Wang L. Application study of the curved surface compression system in three-dimensional sidewall compression inlet[R]. AIAA 2014-2840, 2014.
[44] 李永洲,张堃元,钟启涛. 新型弥散反射激波中心体基准流场研究[J]. 航空动力学报(待发表).
Li Y, Zhang K, Zhong Q. Investigation of basic flowfield with innovative center body to diffuse reflected shock wave[J]. Journal of Aerospace Power (in press). (in Chinese)
[45] 甘宁钢. 宽马赫数凹曲激波压缩进气道型面变几何研究[D]. 南京: 南京航空航天大学, 2012.
Gan N. Research on variable geometry inlet with concave shockwave compression surface operating in a large Mach number range[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[46] 杨顺凯,张堃元,王磊,等. 流量系数可控弹性自适应高超进气道研究[J]. 推进技术(待发表).
Yang S, Zhang K, Wang L, et al. Research on elastic and self-adaptive hypersonic inlet with controllable flow coefficient[J]. Journal of Propulsion Technology (in press). (in Chinese)
[47] 杨顺凯,张堃元. 多点集中力下高超进气道弹性变几何研究[J]. 航空动力学报(待发表).
Yang S, Zhang K. Research on elastic deformable geometry of hypersonic inlet with multiple forces[J]. Journal of Aerospace Power (in press). (in Chinese)
[48] M?lder S. Scamjet intake design[C]//Summer school lecture on hypersonic propulsion technology. Xiamen: Department of Aeronautics, Xiamen University, 2014.
[49] 周宏奎,张堃元,刘凯礼,等. 二元进气道外压段阻力的理论分析[C]//中国航空学会航空动力分会火箭发动机专业委员会2009年推进技术学术年会. 昆明: 国防科技大学, 2009.
Zhou H, Zhang K, Liu K, et al. Theoretical analysis on the drag of two-dimensional hypersonic inlet's external compression[C]//Annual conference of Rocket engine technical committee, Chinese society of aeronautics and astronautics. Kunming: National University of Defense Technology, 2009. (in Chinese)
[50] 骆晓臣. 高超声速进气道内部阻力的分析和研究[D]. 南京: 南京航空航天大学, 2007.
Luo X. Analysis and investigation of internal drags in hypersonic inlets[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese)

文章导航

/