流体力学与飞行力学

高速压气机叶栅旋涡结构及其流动损失研究

  • 张海灯 ,
  • 吴云 ,
  • 李应红 ,
  • 赵勤
展开
  • 1. 空军工程大学 航空航天工程学院, 陕西 西安 710038;
    2. 西安交通大学 航空航天学院, 陕西 西安 710091
张海灯 男,博士研究生。主要研究方向:轴流压气机内部流动结构及其等离子体流动控制。E-mail:zhanghaideng@126.com;吴云 男,博士,副教授,博士生导师。主要研究方向:等离子体流动控制。Tel:029-84787527 E-mail:wuyun1223@126.com

收稿日期: 2013-11-07

  修回日期: 2014-03-13

  网络出版日期: 2014-09-17

基金资助

国家自然科学基金(50906100,51336011);高等学校全国优秀博士学位论文作者专项资金(201172);陕西省科学技术研究发展计划(2013KJXX-83)

Investigation of Vortex Structure and Flow Loss in a High-speed Compressor Cascade

  • ZHANG Haideng ,
  • WU Yun ,
  • LI Yinghong ,
  • ZHAO Qin
Expand
  • 1. College of Aeronautics and Astronautics Engineering, Airforce Engineering University, Xi'an 710038, China;
    2. College of Aeronautics and Astronautics, Xi'an Jiao Tong University, Xi'an 710091, China

Received date: 2013-11-07

  Revised date: 2014-03-13

  Online published: 2014-09-17

Supported by

National Natural Science Foundation of China (50906100,51336011); Special Fund for Author of National University Excellent Doctoral Dissertation (201172); Science and Technology Development Program of Shaanxi Province (2013KJXX-83)

摘要

为揭示高亚声速来流条件下压气机叶栅内部流动特性,对高速压气机叶栅通道内旋涡结构和流动损失的产生与演变规律进行研究。首先建立了数值仿真模型并用实验验证,然后详细研究了叶栅通道内主要旋涡结构、拓扑规律和旋涡模型,最后分析了叶栅通道内流动损失与旋涡结构的内在联系。高速压气机叶栅通道内主要存在马蹄涡、端壁展向涡、通道涡、壁角涡、壁面涡、集中脱落涡和尾缘脱落涡7个集中涡系,通道涡由端壁来流附面层中发展而来,是角区复杂旋涡结构的主要诱因;攻角由0°增大为4°,通道涡的涡核更早地脱落端壁附面层向角区发展,但对角区流动的影响减弱,叶片尾缘未形成明显的集中脱落涡。伴随着集中脱落涡的消失,叶栅固壁面拓扑结构中,叶片尾缘吸力面上没有出现与集中脱落涡对应的分离螺旋点,并且与叶中脱落涡层相对应的分离线和再附线消失,尾缘脱落涡仅包含近端区的一个分支。由总压损失沿流向和展向的变化规律,叶栅通道流动损失主要来源于角区复杂旋涡结构引起的强剪切作用,近端壁区的总压损失与角区主要涡系结构的生成和发展密切相关;攻角由0°增大至4°,角区旋涡的影响能力变弱,近端区流动损失减小,与叶中部位总压损失的差异缩小。

本文引用格式

张海灯 , 吴云 , 李应红 , 赵勤 . 高速压气机叶栅旋涡结构及其流动损失研究[J]. 航空学报, 2014 , 35(9) : 2438 -2450 . DOI: 10.7527/S1000-6893.2014.0022

Abstract

In order to find out the internal flow characteristics of compressor cascade in high subsonic flow, research on the occurrence and development of high-speed compressor cascade vortex structures and flow loss are established. Firstly, the simulation model is erected and verified with experimental results; secondly, the main vortex structures, topological patterns and vortex models in the cascade passage are researched in detail; in the end, the relationship between flow loss and vortex structures is analyzed. Seven main vortex structures including horseshoe vortex, endwall span vortex, passage vortex, corner vortex, wall vortex, concentrated shedding vortex and trailing edge shedding vortex are observed in high-speed compressor cascade passage, and passage vortex which originates from the inlet endwall boundary layer is the main reason for the complicated vortex structures. As the angle of attack increases from 0° to 4°, although passage vortex vortex core separates earlier from the corner boundary layer, influences of passage vortex on the passage flow are weakened and concentrated shedding vortex at the trailing edge disappears. According to the cascade topological structure, with the disappearance of concentrated shedding vortex, spiral point corresponding to concentrated shedding vortex on suction surface disappears and the attachment line and separation line at trailing edge corresponding to midspan trailing edge shedding vortex are vanished, indicating that trailing edge shedding vortex only exists near endwall. According to the variance law of totalpressure loss coefficient in streamwise and spanwise direction, cascade passage flow loss is mainly attributed to strong sheering action caused by the complicated corner vortex structures, and the totalpressure loss near endwall is closely related to the occurrence and development of the main corner vortex structures; with the increase of angle of attack from 0° to 4°, however, influences of corner vortex structures are weakened, and the gap between totalpressure loss near endwall and midspan are narrowed as a result of the decrease of flow loss near endwall.

参考文献

[1] Tang Y P, Chen Y Z. Vortex flow in compressor cascade[J]. Journal of Aerospace Power, 1990, 5(2): 103-113. (in Chinese) 唐燕平, 陈予章. 扩压叶栅中的旋涡流动[J]. 航空动力学报, 1990, 5(2): 103-113.

[2] Wang Z Q, Feng G T, Wang S T, et al. Study on secondary flow vortex structures in turbine bladings[J]. Journal of Engineering Thermophysics, 2002, 23(5): 553-556. (in Chinese) 王仲奇, 冯国泰, 王松涛, 等. 透平叶片中的二次流旋涡结构的研究[J]. 工程热物理学报, 2002, 23(5): 553-556.

[3] Chen S W, Chen F, Guo S, et al. Performance of curved compressor cascade with large camber angles in different incidences[J]. Journal of Engineering Thermophysics, 2007, 28(1): 117-120. (in Chinese) 陈绍文, 陈浮, 郭爽, 等. 高负荷弯曲扩压叶栅中旋涡流动的研究[J]. 工程热物理学报, 2007, 28(1): 117-120.

[4] Zhou X, Han W J. Review on the development of turbine rectangle cascade vortex model[J]. Journal of Aerospace Power, 2001, 16(3): 199-204. (in Chinese) 周逊, 韩万金. 涡轮矩形叶栅中旋涡模型的进展回顾[J]. 航空动力学报, 2001, 16(3): 199-204.

[5] Wang H P, Olson S J, Goldstein R J, et al. Flow visualization in a linear turbine cascade of high performance turbine blade[J]. Journal of Turbomachinery, 1997, 119(1): 1-8.

[6] Zhang H L, Wang S T, Wang Z Q. Influence of incidence on secondary vortex in the compressor cascade[J]. Journal of Aerospace Power, 2006, 21(1): 150-155. (in Chinese) 张华良, 王松涛, 王仲奇. 冲角对压气机叶栅内二次涡的影响[J]. 航空动力学报, 2006, 21(1): 150-155.

[7] Salvage J W. Investigation of secondary flow behavior and end-wall boundary layer development through compressor cascade, TN-107[R]. Brusseds: Vrije University Brussels, 1974.

[8] Inoue M, Kuroumarou M. Three-dimensional structure and decay of vortices behind and axial flow rotation blade row[J]. Journal of Engineering for Gas Turbine and Power, 1984, 106(3): 561-569.

[9] Kang S. Investigation on the three-dimensional flow within a compressor cascade with and without tip clearance[D]. Brussels: Vrije University Brussels, 1993.

[10] Zhang Y J, Wang S H, Xu J Z, et al. Research on topology and vortex structure in compressor cascade[J]. Science E: Technological Science, 2009, 39(5): 1016-1025. (in Chinese) 张永军, 王社会, 徐建中, 等. 扩压叶栅中拓扑与漩涡结构的研究[J]. 中国科学E辑: 技术与科学, 2009, 39(5): 1016-1025.

[11] Lu H W, Guo S, Zhong J J, et al. Investigation of flow strueture in compressor stator passage with hub tip[J]. Journal of Engineering Thermophysics, 2012, 33(1): 51-54. (in Chinese) 陆华伟, 郭爽, 钟兢军, 等. 带根部间隙压气机静叶流道流动结构研究[J]. 工程热物理学报, 2012, 33(1): 51-54.

[12] Zhang H L, Wang S T, Wang Z Q. Effect of bowed blades on the separation structures in high-turning compressor cascades[J]. Journal of Propulsion Technology, 2007, 28(1): 36-39. (in Chinese) 张华良, 王松涛, 王仲奇. 叶片弯曲对大折转压气机叶栅内分离结构的影响[J]. 推进技术, 2007, 28(1): 36-39.

[13] Guo S, Lu H W, Chen F, et al. Vortex control and aerodynamic performance improvement of a highly loaded compressor cascade via inlet boundary layer suction[J]. Experiments in Fluids, 2013, 54(7): 1570.

[14] Tian F, Zhong J J. An experimental investigation about the theory of cascade loss reduced by endwall fences[J]. Journal of Engineering Thermophysics, 2009, 30(7): 1126-1128. (in Chinese) 田夫, 钟兢军. 端壁翼刀降低叶栅损失机理的实验研究[J]. 工程热物理学报, 2009, 30(7): 1126-1128.

[15] Liu Y M, Zhong J J, Wang B G, et al. Analysis of secondary flow structures of compressor cascade with different fences[J]. Journal of Aerospace Power, 2008, 23(7): 1240-1245. (in Chinese) 刘艳明, 钟兢军, 王保国, 等. 具有不同翼刀的压气机叶栅二次流结构分析[J]. 航空动力学报, 2008, 23(7): 1240-1245.

[16] Zhao X H, Wu Y, Li Y H, et al. Separation structure and plasma flow control on highly loaded compressor cas-cade[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 208-219. (in Chinese) 赵小虎, 吴云, 李应红, 等. 高负荷压气机叶栅分离结构及其等离子体流动控制研究[J]. 航空学报, 2012, 33(2): 208-219.

[17] Zhao X H, Li Y H, Wu Y, et al. Numerical investigation of flow separation control on a highly loaded compressor cascade by plasma aerodynamic actuation[J]. Chinese Journal of Aeronautics, 2012, 25(3): 349-360.

[18] Hergt A, Meyer R, Liesner K, et al. A new approach for compressor endwall contouring, ASME GT2011-45858[R].Vancouver: International Gas Turbine Institute, 2011.

[19] Zhong J J, Gao H Y, Wu H, et al. Experimental investigation of flow-field in turbine cascade with different exit mach number[J]. Journal of Engineering Thermophysics, 2013, 34(1): 45-49. (in Chinese) 钟兢军, 高海洋, 武卉, 等.变马赫数涡轮平面叶栅流场的实验研究[J]. 工程热物理学报, 2013, 34(1): 45-49.

[20] Liu Y W, Lu L P, Fang L, et al. Modification of spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity[J]. Physics Letters A, 2011, 375(24): 2377-2381.

[21] Currie T C. Comparison of w-based turbulence models for simulating flows in transonic compressor cascades, ASME GT1998-421[R].Washington, D. C.: NASA, 1998.

[22] Hilgenfeld L, Cardamone P, Fottner L. Boundary layer investigations on a highly loaded transonic compressor cascade with shock/laminar boundary layer interactions[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217(4): 349-356.

[23] Kang S. An application of topological analysis to studying the three-dimensional separation in cascades: Part 1[J]. Applied Mathematics and Mechanics, 1990, 11(5): 489-495.

[24] Kang S. An application of topological analysis to studying the three-dimensional separation in cascades: Part 2[J]. Applied Mathematics and Mechanics, 1990, 11(12): 1119-1127.

[25] Zhang H X, Deng X G. Analytic studies for three dimensional steady separated flows and vortex motion[J]. Acta Aerodynamic Sinica, 1992, 10(1): 8-20. (in Chinese) 张涵信, 邓小刚. 三维定常分离流和涡运动的定性分析研究[J]. 空气动力学报, 1992, 10(1): 8-20.

文章导航

/