气动弹性力学

基于CFD/CSD耦合的叶轮机叶片失速颤振计算

  • 周迪 ,
  • 陆志良 ,
  • 郭同庆 ,
  • 沈恩楠
展开
  • 南京航空航天大学 航空宇航学院, 南京 210016
周迪 男, 博士研究生。主要研究方向: 叶轮机气动弹性力学。Tel: 025-84892680 E-mail: zhoudi0417@nuaa.edu.cn;陆志良 男, 博士, 教授, 博士生导师。主要研究方向: 非定常空气动力学与气动弹性力学。Tel: 025-84892680 E-mail: luzl@nuaa.edu.cn

收稿日期: 2014-07-16

  修回日期: 2014-09-02

  网络出版日期: 2014-09-10

基金资助

江苏省高校优势学科建设工程资助项目

Stall flutter computation of turbomachinery blade based on a CFD/CSD coupling method

  • ZHOU Di ,
  • LU Zhiliang ,
  • GUO Tongqing ,
  • SHEN Ennan
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-07-16

  Revised date: 2014-09-02

  Online published: 2014-09-10

Supported by

A Project Founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

为了研究叶轮机叶片的失速颤振特性,发展了一种计算流体力学与计算结构力学(CFD/CSD)时域耦合方法。该方法通过每一物理时刻CFD和CSD的循环迭代实现了耦合计算。在CFD分析中,采用鲁棒性较好的空间离散格式AUSM+-UP,并基于延迟脱体涡模型(DDES)模拟了带分离流动。在结构分析中,通过模态法构建了旋转叶片动力学方程并运用杂交多步方法进行求解。以孤立转子Rotor37为例,计算了不同工况下流场总体与细节参数,与实验结果的对比验证了CFD算法的精度。对某转子叶片进行了颤振特性研究,计算所得的广义位移时间响应曲线表明该叶片在近失速工况下会发生失速颤振,其表现形式为一阶弯曲模态发散且各阶模态之间不耦合。分析表明,流场不稳定和非定常效应是引起失速颤振的关键因素,同时折合频率的降低也会导致原本气动弹性稳定的叶片发生失速颤振。

本文引用格式

周迪 , 陆志良 , 郭同庆 , 沈恩楠 . 基于CFD/CSD耦合的叶轮机叶片失速颤振计算[J]. 航空学报, 2015 , 36(4) : 1076 -1085 . DOI: 10.7527/S1000-6893.2014.0212

Abstract

A computational fluid dynamics/computational structural dynamics (CFD/CSD) model coupling in the time domain is developed for the stall flutter computation of turbomachinery blade. CFD and CSD slovers are coupled via successive iterations within each physical time step. In CFD analysis, a robust scheme named AUSM+-UP is adopted and delayed-detached-eddy simulation (DDES) is applied to simulating separated flow. In the structure analysis, the structural dynamic equation of rotating blade is constructed based on a modal approach and a hybrid multi-step scheme is used to solve the equation. The CFD codes calculate flow field characteristics of Rotor37 under different working conditions. The computed results show good agreement with the experimental results, both in overall performance and flow field details. The presented method is then applied to flutter computation and analysis of a test compressor rotor. The computed time response of generalized coordinates successfully predicts stall flutter at near stall condition and shows it to be a phenomenon of single bending-modal divergence and modal uncoupling. The results also indicate that the flow unstability and unsteadiness are key factors affecting the flutter characteristics. Besides, it is found that for the stable blade, the decrease of reduced frequency may cause stall flutter.

参考文献

[1] Zhang M M, Li S B, Hou A P, et al. A review of the research on blade flutter in turbomachinery[J]. Advances in Mechanics, 2011, 41(1): 26-38 (in Chinese). 张明明, 李绍斌, 候安平,等. 叶轮机械叶片颤振研究的进展与评述[J]. 力学进展, 2011, 41(1): 26-38.
[2] Liu W G, Feng Y C. Analysis of empirical flutter prediction method of blades and establishment of a flutter data bank[J]. Journal of Beijing Institute of Aeronautics and Astronautics, 1986(4): 113-122 (in Chinese). 刘文阁, 冯毓诚. 对经验法预测叶片失速颤振的分析及叶片颤振数据库的建立[J]. 北京航空学院学报, 1986(4): 113-122.
[3] Bendiksen O O. Aeroelastic problems in turbomachines[C]//31st Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1990: 1736-1761.
[4] Su D, Zhang W W, Zhang C A, et al. An unsteady aerodynamic modeling for turbomachinery based on system identification[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 242-248 (in Chinese). 苏丹, 张伟伟, 张陈安,等. 基于系统辨识技术的叶轮机非定常气动力建模方法[J]. 航空学报, 2012, 33(2): 242-248.
[5] Bendiksen O O, Friedmann P P. The effects of bending-torsion coupling of fan and compressor blade flutter[J]. Journal of Enigeering for Gas Turbines and Power, 1982, 104(3): 617-623.
[6] Zheng Y, Yang H. Coupled fluid-structure flutter analysis of a transonic fan[J].Chinese Journal of Aeronautics, 2011, 24(3): 258-264.
[7] Guo T Q, Lu Z L, Tang D, et al. A CFD/CSD model for aeroelastic calculations of large-scale wind turbines[J]. Science China Technological Sciences, 2013, 56(1): 205-211.
[8] Sadeghi M, Liu F. Coupled fluid-structure simulation for turbomachinery blade rows, AIAA-2005-0018[R]. Reston: AIAA, 2005.
[9] Hongsik I M, Chen X Y , Zha G C. Detached eddy simulation of transonic rotor stall flutter using a fully coupled fluid-structure interaction[C]//ASME 2011 Turbo Expo: Turbines Technical Conference and Exposition. New York: ASME, 2011: 1217-1230.
[10] Xu K N, Wang Y R. Application of time domain method in aeroelastic computations for compressor rotors[J]. Journal of Aerospace Power, 2011, 26(1): 191-197 (in Chinese). 徐可宁, 王延荣. 时域法在压气机转子气动弹性计算中的应用[J]. 航空动力学报, 2011, 26(1): 191-197.
[11] Quan J L, Zhang W W, Su D, et al. Flutter analysis of turbomachinery cascades based on a coupled CFD/CSD method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2019-2028 (in Chinese). 全金楼, 张伟伟, 苏丹, 等. 基于CFD/CSD时域耦合方法的多通道叶栅颤振分析[J]. 航空学报, 2013, 34(9): 2019-2028.
[12] Zhou S. Turbomachinery aeroelasticity introduction[M]. Beijing: National Defense Industry Press, 1986: 8-11 (in Chinese). 周盛. 叶轮机气动弹性力学引论[M]. 北京: 国防工业出版社, 1986: 8-11.
[13] Liou M S. A sequel to AUSM, Part Ⅱ: AUSM+-up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170.
[14] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.
[15] Morton S A, Forsythe J R, Mitchell A M, et al. DES and RANS simulations of delta wing vortical flows, AIAA-2002-0587[R]. Reston: AIAA, 2002.
[16] Spalart P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41(1): 181-202.
[17] Spalart P R, Deck S, Shut M L,et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195.
[18] Jiang Y W, Zhang W W, Ye Z Y. Study of time-marching method for fluid/structure coupling solution based on CFD technique[J]. Journal of Vibration Engineering, 2007, 20(4): 396-400 (in Chinese). 蒋跃文, 张伟伟, 叶正寅. 基于CFD技术的流场/结构时域耦合求解方法研究[J]. 振动工程学报, 2007, 20(4): 396-400.
[19] Smith M J, Hodges D H, Cesnik C E S. Evaluation of computational algorithms suitable for fluid-structure interactions[J]. Journal of Aircraft, 2000, 37(2): 282-294.
[20] Marshall J G. A review of aeroelasticity methods with emphasis on turbomachinery applications[J]. Journal of Fluids and Structures, 1996, 10(3): 237-267.
[21] Reid L, Moore R D. Design and overall performance of four highly-loaded, high speed inlet stages for an advanced high-pressure ratio core compressor, NASA TP-1337[R]. Washington, D. C.: NASA, 1978.
[22] Suder K L, Celestina M L. Experiment and computational investigation of the tip clearance flow in a transonic axial compressor rotor, NASA TM-106711[R]. Washington, D. C.: NASA, 1994.
[23] Denton J D. Lessons from rotor37[J]. Journal of Thermal Science, 1997, 6(1): 1-13.
[24] Lubomski J F. Status of NASA full-scale engine aeroelasticity research, NASA TM-81500[R]. Washington, D. C.: NASA, 1980.

文章导航

/