金属次加筋结构的单轴压载稳定性优化
收稿日期: 2014-05-14
修回日期: 2014-08-19
网络出版日期: 2014-09-05
Stability of metallic sub-stiffened structure and its optimization under uniaxial loading
Received date: 2014-05-14
Revised date: 2014-08-19
Online published: 2014-09-05
针对在新型制造技术背景下的航空轻量化结构发展,提出了次级加筋结构3种可能的形式,并对金属次加筋结构的稳定性问题进行了数值计算与优化研究。基于多学科优化软件ModelCenter与有限元(FEM)软件ABAQUS建立了金属次加筋结构优化设计的软件框架,利用粒子群优化(PSO)算法对各形式下次加筋结构的参数配置进行优化。分析了各形式的优化结构在单轴压载作用下,次加筋板对传统加筋板临界屈曲载荷以及极限承载能力的增益效果。结果表明,引入次加筋结构使传统加筋板的稳定性能与极限承载能力提升明显,对于适应新制造技术的航空轻量化结构设计有一定参考价值。
倪杨 , 徐元铭 . 金属次加筋结构的单轴压载稳定性优化[J]. 航空学报, 2015 , 36(5) : 1511 -1519 . DOI: 10.7527/S1000-6893.2014.0195
To promote the development of light weight aeronautical structure under the booming new manufacturing technology, three promising layouts of sub-stiffened thin wall structures are proposed and the corresponding design optimization regarding the structure's buckling behavior are conducted based on numerical simulation. A design optimization framework of sub-stiffened structure is developed based on the multidisciplinary optimization platform ModelCenter and finite element method (FEM) software ABAQUS. The framework is applied for the optimal designs of the three panel layouts with particle swarm optimization (PSO) algorithm. Three optimal sub-stiffened panels are acquired while the performance gains of critical buckling load and ultimate strength under uniaxial loading after sub-stiffening is introduced to the benchmark panel structure are analyzed. The result indicates that the introduction of sub-stiffening to the traditional stiffened panel can significantly improve the panel's buckling load and ultimate strength under uniaxial loading, and thus deserves further attention for aerospace industry which endeavors to develop high performance light weight structures with new manufacture technology.
[1] Bushnell D, Rankin C. Optimum design of stiffened panels with substiffeners[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2005: 1-54.
[2] Özakça M, Murphy A, van der Veen S. Buckling and post-buckling of sub-stiffened or locally tailored aluminium panels[C]//25th International Congress of the Aeronautical Sciences. Bonn, Germany: ICAS, 2006: 3-8.
[3] Quinn D, Murphy A, McEwan W, et al. Stiffened panel stability behaviour and performance gains with plate prismatic sub-stiffening[J]. Thin-Walled Structures, 2009, 47(12): 1457-1468.
[4] Quinn D, Murphy A, McEwan W, et al. Non-prismatic sub-stiffening for stiffened panel plates—stability behaviour and performance gains[J]. Thin-Walled Structures, 2010, 48(6): 401-413.
[5] Murphy A, Quinn D, Mawhinney P, et al. Tailoring static strength performance of metallic stiffened panels by selective local sub-stiffening[C]//Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA. 2006: 1-4.
[6] Wang H M. Additive layer manufacturing technology for high performance metallic structure, opening new page of defense manufacture[J]. Defense Manufacture Technology, 2013(3): 3 (in Chinese). 王华明. 高性能金属构件增材制造技术开启国防制造新篇章[J]. 国防制造技术, 2013(3): 3.
[7] Mehnen J, Ding J, Lockett H, et al. Design study for wire and arc additive manufacture[J]. International Journal of Product Development, 2014, 19(1): 2-20.
[8] Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12): 3315-3322.
[9] Kapania R K, Li J, Kapoor H. Optimal design of unitized panels with curvilinear stiffeners[C]//AIAA 5th ATIO and the AIAA 16th Lighter-than-Air Systems Technology Conference and Balloon Systems Conference. Reston: AIAA, 2005: 1708-1737.
[10] Mulani S B, Li J, Joshi P, et al. Optimization of stiffened electron beam freeform fabrication (EBF3) panels using response surface approaches[C]//48th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: 2429-2437.
[11] Tamijani A Y, McQuigg T, Kapania R K. Free vibration analysis of curvilinear-stiffened plates and experimental validation[J]. Journal of Aircraft, 2010, 47(1): 192-200.
[12] Jrad M, Khan A I, Kapania R K. Buckling analysis of curvilinearly stiffened composite panels with cracks[C]//55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2014.
[13] Joshi P, Mulani S B, Slemp W C H, et al. Minimization of acoustic radiation from a turbulent boundary layer excited panel with curvilinear stiffeners[C]//51th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010.
[14] Cerini M, Falzon B G. Use of the arc-length method for capturing mode jumping in postbuckling aerostructures[J]. AIAA Journal, 2005, 43(3): 681-689.
[15] Falzon B G, Cerini M. A study of secondary instabilities in postbuckling composite aerostructures[J]. Aeronautical Journal, 2007, 111(1125): 715-729.
/
〈 | 〉 |