一种孔径和频率二维稀疏的步进频SAR成像方法
收稿日期: 2014-06-05
修回日期: 2014-08-07
网络出版日期: 2014-09-01
基金资助
国家自然科学基金(61201369, 61471386); 中国博士后科学基金(2012M521897); 空军工程大学优秀博士学位论文基金
A SAR imaging method with sparse aperture and frequency using stepped-frequeney waveform
Received date: 2014-06-05
Revised date: 2014-08-07
Online published: 2014-09-01
Supported by
National Natural Science Foundation of China (61201369, 61471386); China Postdoctoral Science Foundation (2012M521897); Doctoral Foundation of Air Force Engineering University
步进频率信号(SFWs)在不增加雷达系统瞬时带宽的情况下能够获得高的距离向分辨率的同时,也存在着抗干扰能力较差及其等效重复频率较低的问题,并且在方位向积累时间内由于雷达载机工作状态的变化,会导致方位向的数据录取不完整。针对上述问题,提出一种孔径和频率二维稀疏的步进频合成孔径雷达(SAR)成像方法。首先,分析了稀疏步进频率信号(SSFWs)的SAR成像模型,然后基于压缩感知理论完成距离向成像处理。其次,针对稀疏孔径的回波数据,通过构造成像算子和压缩感知重建模型的方法实现其距离徙动校正和方位压缩处理,进而获得二维成像结果。相比于传统的步进频率信号SAR成像,利用所提方法能够在少量的频率资源和雷达回波数据情况下实现准确的SAR成像。最后,通过对仿真和实测的步进频率雷达数据进行成像处理,验证了所提方法的有效性和可行性。
顾福飞 , 张群 , 娄昊 , 杨秋 , 陈一畅 . 一种孔径和频率二维稀疏的步进频SAR成像方法[J]. 航空学报, 2015 , 36(4) : 1221 -1229 . DOI: 10.7527/S1000-6893.2014.0177
Stepped-frequency waveforms (SFWs) can use the digital signal processing to obtain high range resolution with relatively narrow instantaneous bandwidth, but they also have the disadvantages of poor anti-jamming capability and long-time period of transmission. And in the coherent integration time, it frequently occurs that some of echo data are missing. In this paper, a novel synthetic aperture radar (SAR) imaging method with sparse aperture and frequency is proposed based on sparse stepped-frequency waveforms (SSFWs). Firstly, the signal model for SSFWs SAR imaging is analyzed and then the range compression is achieved by using the compressed sensing theory. Secondly, as to the sparse aperture data, the imaging operator and the CS-based imaging scheme are constructed to implement the range cell migration correction and azimuth compression simultaneously. Compared with the traditional SAR imaging method of SFWs, much smaller number of frequencies and smaller amount of imaging data are required for SAR imaging by using the proposed method. Finally, the effectiveness of the proposed method is proved by the simulation and experimental results.
[1] Wu X F, Liu Y, Wang X S, et al. Analysis of SAR imaging characteristics of targets with rotational micro-motion [J]. Journal of Astronautics, 2010, 31(4): 1181-1189 (in Chinese). 吴晓芳, 刘阳, 王雪松, 等. 旋转微动目标的SAR成像特征分析[J]. 宇航学报, 2010, 31(4): 1181-1189.
[2] Jiang R, Zhu D Y, Zhu Z D. A novel approach to strip-map SAR autofocus [J]. Acta Aeronatuica et Astronautica Sinica, 2010, 31(12): 2385-2392 (in Chinese). 蒋锐, 朱岱寅, 朱兆达. 一种用于条带模式SAR成像的自聚焦算法[J]. 航空学报, 2010, 31(12): 2385-2392.
[3] Han B, Ding C B, Liang X D, et al. A new method for stepped-frequency SAR imaging[C]// EUSAR 2006 6th European Conference on Synthetic Aperture Radar. London: IET, 2006: 1-4.
[4] Chen J, Zeng T, Long T. A novel high-resolution stepped frequency SAR signal processing method[C]// 2009 IET International Radar Conference. London: IET, 2009: 1-4.
[5] Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[6] Zhang B C, Hong W, Wu Y R. Sparse microwave imaging: principles and applications [J]. Science China Information Science, 2012, 55(8): 1722-1754.
[7] Zhang L, Zhi J Q, Xing M D, et al. High resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4630-4651.
[8] Zhu F, Zhang Q, Lei Q, et al. Reconstruction of moving target's HRRP using sparse frequency-stepped chirp signal [J]. IEEE Sensors Journal, 2011, 11(10): 2327-2334.
[9] Wang H X, Liang Y, Xing M D, et al. ISAR imaging via sparse frequency-stepped chirp signal [J]. Science China Information Science, 2012, 55(4): 877-888.
[10] He J, Luo Y, Zhang Q, et al. Waveform design and imaging algorithm research of random frequency stepped chirp signal ISAR [J]. Journal of Electronics and Information Technology, 2011, 33(9): 2068-2075 (in Chinese). 何劲, 罗迎, 张群, 等. 随机线性调频步进雷达波形设计及成像算法研究[J]. 电子与信息学报, 2011, 33(9): 2068-2075.
[11] Shah S, Yu Y, Petropulu A. Step-frequency radar with compressive sampling (SFR-CS)[C]// IEEE International Conference on Acoustics Speech and Signal Processing. Piscataway, NJ: IEEE, 2010: 1686-1689.
[12] Liu J H, Xu S K, Gao X Z, et al. Novel imaging methods of stepped frequency radar based on compressed sensing [J]. Journal of System Engineering and Electronics, 2012, 23(1): 47-56.
[13] Yang J G, Thompson J, Huang X T, et al. Random-frequency SAR imaging based on compressed sensing [J]. IEEE Transactions on Geoscience Remote Sensing, 2013, 51(2): 983-994.
[14] Yang J G, Huang X T, Jin T, et al. Synthetic aperture radar imaging using stepped frequency waveform [J]. IEEE Transactions on Geoscience Remote Sensing, 2012, 50(5): 2026-2036.
[15] Candés E. The restricted isometry property and its implications for Compressed Sensing[J]. Comptes Rendus Mathematic, 2006, 246 (9): 589-592.
[16] Baraniuk R. A lecture on compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
[17] Mohimani G H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
[18] Bao Z, Xing M D, Wang T. Radar imaging technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 144-145. 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 144-145.
/
〈 | 〉 |