自旋式飞行器三维SAR成像及测高新模型
收稿日期: 2014-06-03
修回日期: 2014-08-15
网络出版日期: 2014-08-26
A novel model of spin aircraft 3D SAR imaging and height measurement
Received date: 2014-06-03
Revised date: 2014-08-15
Online published: 2014-08-26
自旋式飞行器由于运动轨迹复杂,不仅不能精确测量飞行高度,而且从未被用做SAR成像平台。通过研究自旋式飞行器的三维SAR成像新模型,将测高与三维SAR成像相结合,提出了一种基于三维SAR成像的测高新模型。首先分析了自旋式飞行器天线相位中心运动轨迹的特点,将具有三维空间分布的半螺旋线天线运动轨迹等效为面阵天线;然后基于等效面阵,利用模糊函数理论,推导了相应的三维成像模型,从理论上证明了模型的成像可行性并分析其成像性能;最后在成像模型基础上,提出基于三维SAR成像的自旋式飞行器测高新模型,并从成像角度分析影响测高精度的因素。针对等效面阵非均匀分布的特点,采用后向投影(BP)算法仿真验证自旋式飞行器模型下三维成像的可行性和测高模型的有效性。
陈思远 , 张晓玲 , 师君 , 张海 . 自旋式飞行器三维SAR成像及测高新模型[J]. 航空学报, 2015 , 36(4) : 1240 -1249 . DOI: 10.7527/S1000-6893.2014.0189
Due to the complexity of movement, spin aircraft is never regarded as a general platform for SAR imaging and its accurately measured height is not easy to obtain. In this paper, through studying a new 3D SAR imaging model of spin aircraft, the height measurement is combined with 3D SAR imaging. A height measurement model based on 3D SAR imaging is proposed. Firstly, through the analysis of antenna phase center's trajectory, the half spiral trajectory is equal to the antenna array. Then, based on the equivalent plane array and the fuzzy function theory, a novel spin aircraft 3D SAR imaging model is put forward, the feasibility of 3D imaging is theoretically proved and imaging performance of the model is analyzed. Based on this imaging model, this paper proposes a height measurement model based on 3D SAR imaging and the factors that affect measuring precision are analyzed. According to the characteristics of the equivalent plane array non-uniform distribution, back projection (BP) algorithm is used to verify the feasibility of the 3D imaging model under the spin aircraft and the effectiveness of the height measurement model.
Key words: spin aircraft; antenna array; SAR imaging; imaging processing; height measurement
[1] Pi Y M, Yang J Y. Synthetic aperture radar imaging[M]. Chengdu: University of Electronic Science and Technology of China Press, 2007: 44-65 (in Chinese). 皮亦鸣, 杨建宇. 合成孔径雷达成像原理[M]. 成都: 电子科技大学出版社, 2007: 44-65.
[2] Gu F F, Zhang Q, Guan H, et al. Motion error compensation and imaging for MIMO-SAR based on compressed sensing[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 838-847 (in Chinese). 顾福飞, 张群, 管桦, 等. 基于压缩感知的MIMO-SAR运动误差补偿与成像[J]. 航空学报, 2014, 35(3): 838-847.
[3] He F, Dong Z, Chen Q, et al. Anantenna beam forming method for parasitic SAR performance optimization[C]// Proceedings of 2012 IEEE 11th International Conference on Signal Processing(ICSP 2012). Piscataway, NJ: IEEE, 2012: 1737-1740.
[4] Yu G M, ShangY, Deng H T, et al. Signal analysis and imaging processing of missile-borne side-lookingSAR[J]. Acta Electronica Sinica, 2005, 33(3): 778-782 (in Chinese). 俞根苗, 尚勇, 邓海涛, 等. 弹载侧视SAR 信号分析及成像研究[J]. 电子学报, 2005, 33(3): 778-782.
[5] Xie J Z, Zhang X L, Tian J S, et al. Three-dimensional imaging algorithm for circular SAR based on combination of BP and CS[J]. Telecommunication Engineering, 2013, 53(7): 849-853 (in Chinese). 谢建志, 张晓玲, 田甲申, 等. 基于BP和CS相结合的圆周SAR三维成像算法[J]. 电讯技术,2013, 53(7): 849-853.
[6] Cheng C. 3D synthetic aperture radar super resolution imaging methods[D]. Chengdu: University of Electronic Science and Technology of China, 2012 (in Chinese). 成晨. 三维合成孔径雷达超分辨成像方法研究[D]. 成都: 电子科技大学, 2012.
[7] Mahafza B R, Mitch S. Three-dimensional SAR imaging using linear array in transverse motion[J]. IEEE Transactions on Aerospace and Electronic System, 1996, 32(1): 499-510.
[8] Soumekh M. "Reconnaissance with slant plane circular SAR imaging"[J]. IEEE Transactions on Image Processing, 1996, 5(8): 1252-1265.
[9] Ge X, Hong S, Wen Y, et al. Signal processing laboratory: an improved road extraction methodbased on MRFs in rural areas for SAR images[C]//Proceedings of 2007 Asian and Pacific Conference on Synthetic Aperture Radar. Beijing: China Institute of Electronics(CIE), 2007: 1936-1941.
[10] Xiang J C, Zhang M Y. Radar system[M]. Beijing: Electronic Industry Press, 2001: 44-62 (in Chinese). 向敬成, 张明友.雷达系统[M]. 北京: 电子工业出版社, 2001: 44-62.
[11] Shi J. Biostatic SAR and linear array SAR principle and imaging studies[D]. Chengdu:University of Electronic Science and Technology of China, 2009 (in Chinese). 师君. 双基地SAR与线阵SAR原理及成像技术研究[D]. 成都: 电子科技大学, 2009.
[12] Liu L H, Wang Z, Hu W D, et al. Precession period extraction of ballistic missile based on radar measurement[J]. Modern Radar, 2008, 30(1): 26-33 (in Chinese). 刘丽华, 王壮, 胡卫东, 等. 弹道导弹进动周期雷达测量提取方法研究[J]. 现代雷达, 2008, 30(1): 26-33.
[13] Bao Z, Xing M D, Wang T. Radar imaging technology[M]. Beijing: Electronic Industry Press, 2006: 24-30 (in Chinese). 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2006: 24-30.
[14] Ian G C,Frank HW. Synthetic aperture radar imaging—algorithms and implementation[M]. Beijing: Electronic Industry Press, 2007: 80-92.
[15] Zhang D L, Wang F, Li Y C. Onboard SAR squint improved CS imaging algorithm[J]. Journal of Aerospace, 2011, 32(6): 1359-1364 (in Chinese). 张冬磊, 王蜂, 李亚超. 弹载SAR大斜视改进CS成像算法[J]. 宇航学报, 2011, 32(6): 1359-1364.
[16] Wang B, Wang Y, Hong W, et al. Studies on MB-SAR 3D imaging algorithm using Yule-Walker method[J]. Science China: Technological Sciences,2010, 53(9): 1848-1859.
[17] Li W, Jin Y Q. Scattering simulation and reconstruction of a 3D complex target above an underlying surface using SIMO radar with plane array[J]. Science China: Technological Sciences, 2012, 55(10): 2740-2749.
[18] Zeng T, Chemiakov M, Long T. Generalized approach to resolution analysis in BSAR[J]. IEEE Transactions on Aerospace and Electronie Systems, 2005, 41(2): 461-474.
[19] Liu P Y, Sun R S, Li W M, et al. A coning motion based guidance law for guided rocket with velocity control[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 933-941. 刘鹏云, 孙瑞胜, 李伟明, 等.基于锥形运动的制导火箭速度控制导引律设计[J]. 航空学报, 2014, 35(4): 933-941.
[20] Liu J X, Lin H, Xiong Z A, et al. C-band pulse radar altimeter design[J]. Information and Electronic Engineering, 2008, 6(6): 401-404 (in Chinese). 刘建新, 林华, 熊宗安, 等. C波段脉冲雷达高度表设计[J]. 信息与电子工程, 2008, 6(6): 401-404.
/
〈 | 〉 |