电子与控制

对失控航天器在轨服务的自适应滑模控制器设计

  • 陈炳龙 ,
  • 耿云海
展开
  • 哈尔滨工业大学 卫星技术研究所, 哈尔滨 150080
陈炳龙 男, 博士研究生。主要研究方向: 航天器导航算法与控制算法。 Tel: 0451-86402357-8503 E-mail: chenbinglonghit@163.com;耿云海 男, 博士, 教授, 博士生导师。主要研究方向: 航天器姿轨控系统设计、导航制导与控制系统设计。 Tel: 0451-86413440-8408 E-mail: gengyh@hit.edu.cn

收稿日期: 2014-05-05

  修回日期: 2014-08-14

  网络出版日期: 2014-08-15

基金资助

国家自然科学基金 (61104026)

Adaptive sliding mode controller design for on-orbit servicing to uncontrollable spacecraft

  • CHEN Binglong ,
  • GENG Yunhai
Expand
  • Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150080, China

Received date: 2014-05-05

  Revised date: 2014-08-14

  Online published: 2014-08-15

Supported by

National Natural Science Foundation of China (61104026)

摘要

为实现对自由翻滚的失控目标航天器进行在轨服务,基于二阶滑模控制算法设计了相对位置与姿态耦合的自适应控制器。考虑相对转动对相对平动的耦合作用,建立了两航天器对接端口间相对位置与姿态耦合的动力学模型,并在此基础上设计了自适应Super twisting控制器,以减弱已知界限的有界干扰所产生的震颤效应,使闭环系统在有限时间内收敛到平衡点。利用李雅普诺夫方法证明了有界干扰下的闭环系统稳定性,并对收敛时间的上界进行了估计。仿真结果表明,与Super twisting算法相比,所设计的自适应二阶滑模控制器对参数不确定性及线性增长有界干扰具有较强的鲁棒性,且控制精度满足在轨服务的任务需求。

本文引用格式

陈炳龙 , 耿云海 . 对失控航天器在轨服务的自适应滑模控制器设计[J]. 航空学报, 2015 , 36(5) : 1639 -1649 . DOI: 10.7527/S1000-6893.2014.0185

Abstract

A relative position and attitude coupled adaptive controller is designed on the basis of second-order sliding mode control algorithm. It is proposed for on-orbit servicing on the free tumbling uncontrollable target spacecraft. Considering the coupled effect of relative rotation on relative translation, a relative position and attitude coupled dynamic model is derived for two docking ports on different spacecraft. Based on this coupled relative motion model, an adaptive super twisting controller is proposed to attenuate the chattering phenomenon caused by bounded perturbation with known upper bound. It makes the closed-loop system converge to the equilibrium point in finite time. Under the condition of limited disturbances, the closed-loop system is proved to be steady by Lyapunov method and the supremum of convergence time is estimated. By comparison with the super twisting method, numerical simulations are performed to validate strong robustness of the designed adaptive second-order sliding mode controller for parameter uncertainty and linearly growing bounded disturbances. The control accuracy is high enough for the requirement of on-orbit servicing mission.

参考文献

[1] Long A M, Richards M G, Hastings D E. On-orbit servicing: a new value proposition for satellite design and operation[J]. Journal of Spacecraft and Rockets, 2007, 44(4): 964-976.
[2] Komanduri A S, Bindel D, Da F M. Guidance and control strategies for a spacecraft to rendezvous with a non-cooperative spacecraft[C]//Proceeding of the 61st International Astronautical Congress. Paris, France: International Astronautical Federation, 2010: 5982-5991.
[3] Segal S, Gurfil P. Effect of kinematic rotation-translation coupling on relative spacecraft translational dynamics[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 1045-1050.
[4] Utkin V I, Poznyak A S. Adaptive sliding mode control with application to super-twist algorithm: equivalent control method[J]. Automatica, 2013, 49(1): 39-47.
[5] Shtessel Y, Taleb M, Plestan F. A novel adaptive-gain supertwisting sliding mode controller: methodology and application[J]. Automatica, 2012, 48(5): 759-769.
[6] Jia J, Yao Y, Ma K M. Continuous optimal terminal proximity guidance algorithm for autonomous rendezvous and docking[J]. Information Technology Journal, 2013, 12(5): 1011-1017.
[7] Gao X Y, Teo K L, Duan G R. An optimal control approach to robust control of nonlinear spacecraft rendezvous system with θ-D technique[J]. International Journal of Innovative Computing, Information and Control, 2013, 9(5): 2099-2110.
[8] Utkin V. About second order sliding mode control, relative degree, finite-time convergence and disturbance rejection[C]//Proceeding of 2010 11th International Workshop on Variable Structure Systems. Piscataway, NJ: IEEE Press, 2010: 528-533.
[9] Wilfrid P, Jean P B. Sliding mode control in engineering[M]. New York: Marcel Dekker, 2002: 51-99.
[10] Gonzalez T, Moreno J A, Fridman L. Variable gain super-twisting sliding mode control[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2100-2105.
[11] Levant A. Sliding order and sliding accuracy in sliding mode control[J]. International Journal of Control, 1993, 58(6): 1247-1263.
[12] Levant A. Principles of 2-sliding mode design[J]. Automatica, 2007, 43(4): 576-586.
[13] Pukdeboon C. Second-order sliding mode controllers for spacecraft relative translation[J]. Applied Mathematical Sciences, 2012, 6(100): 4965-4979.
[14] Pan H, Kapila V. Adaptive nonlinear control for spacecraft formation flying with coupled translational and attitude dynamics[C]//Proceeding of the 40th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2001: 2057-2062.
[15] Segal S, Gurfil P. Shape-generalized modeling of relative spacecraft translation, AIAA-2009-6093[R]. Reston: AIAA, 2009.
[16] Moreno J A. A linear framework for the robust stability analysis of a generalized super-twisting algorithm[C]//Proceeding of the 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control. Piscataway, NJ: IEEE Press, 2009: 1-6.
[17] Lu W, Geng Y H, Chen X Q, et al. Coupled control of relative position and attitude for on-orbit servicing spacecraft with respect to target[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 857-865 (in Chinese). 卢伟, 耿云海, 陈雪芹, 等. 在轨服务航天器对目标的相对位置和姿态耦合控制[J]. 航空学报, 2011, 32(5): 857-865.

文章导航

/