机载SAR反投影图像自聚焦处理方法
收稿日期: 2013-12-24
修回日期: 2014-07-27
网络出版日期: 2014-08-15
基金资助
中国博士后科学基金(2014M551630);江苏省博士后科研资助计划(1302089B);江苏省高校自然科学研究项目(14KJ B510024);中央高校基本科研业务费(NJ20140008);南京航空航天大学基本科研业务费(NS2013023); 毫米波国家重点实验室开放课题(K201506)
Autofocus Method of Airborne SAR Imagery Reconstructed via Backprojection
Received date: 2013-12-24
Revised date: 2014-07-27
Online published: 2014-08-15
Supported by
China Postdoctoral Science Foundation (2014M551630); Jiangsu Planned Projects for Postdoctoral Research Funds (1302089B); Natural Science Foundation of the Jiangsu Higher Education Institutions of China(14KJB510024); Fundamental Research Funds for the Central Universities (NJ20140008); NUAA Fundamental Research Funds(NS2013023); Open Reasearch Program of State Key Laboratory of Millimeter Waves (K201506)
王昕 , 朱岱寅 , 蒋锐 . 机载SAR反投影图像自聚焦处理方法[J]. 航空学报, 2014 , 35(11) : 3074 -3081 . DOI: 10.7527/S1000-6893.2014.0168
Backprojection algorithm (BPA) is a classic time domain synthetic aperture radar(SAR) imaging method. Since the imagery reconstructed via BPA is derived via interpolation and accumulation of SAR phase history data, defocus due to motion error will along variant directions and hence traditional autofocus methods cannot be applied directly. To solve this problem, a novel autofocus method for BPA reconstructed imagery is proposed in this paper. Based on the analysis of motion phase error and range migration of BPA processed data, imaging grid is modified to eliminate the space variance of defocus in imagery. The reconstructed SAR imageries after modification can be motion compensated by the phase gradient autofocus (PGA) algorithm in low and moderate resolution cases. Point target simulation results and real data results validate this algorithm.
[1] Carrara W G, Goodman R S, Majewski R, et al. Spotlight synthetic aperture radar signal processing algorithms[M]. Boston: Artech House, 1995: 123-150.
[2] Charles U J, Daniel E W, Paul H E. Spotlight mode synthetic aperture radar: a signal processing approach[M]. Boston: Kluwer Academic Publisher, 1996: 86-101.
[3] Nolan C J, Cheney M. Synthetic aperture inversion[J]. Inverse Problems, 2002, 18(1): 221-235.
[4] Yarman C E, Yazici B, Cheney M. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories[J]. IEEE Transactions on Image Processing, 2008, 17(1): 84-93.
[5] Yarman C E, Yazici B. Synthetic aperture hitchhiker imaging[J]. IEEE Transactions on Imaging Processing, 2008, 17(11): 2156-2173.
[6] Basu S, Bresler Y. O (N2log2N) filtered backprojection reconstruction algorithm for tomography[J]. IEEE Transactions on Image Processing, 2000, 9(10): 1760-1773.
[7] Basu S, Breser Y. Error analysis and performance optimization of fast hierarchical backprojection algorithms[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1103-1117.
[8] Ulander L M H, Hellsten H, Stenstrom G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronics Systems, 2003, 39(3): 760-776.
[9] Rodriguez-Cassola M, Prats P, Krieger G, et al. Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2949-2966.
[10] Vu V T, Karlskrona S, Sjogren T K, et al. Phase error calculation for fast time-domain bistatic SAR algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 631-639.
[11] Macedo K A C, Scheiber R, Moreira A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3151-3162.
[12] Mao X H, Zhu D Y, Zhu Z D. Autofocus correction of APE and residual RCM in spotlight SAR polar format imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2693-2706.
[13] Hayes M P, Callow J H, Gough P T. Strip-map phase gradient autofocus[C]//Proceedings of Image and Vison Computing, 2002: 71-76.
[14] Zhu D Y, Jiang R, Hua X M, et al. Multi-subaperture PGA for SAR autofocusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 468-488.
[15] Jakowatz C V, Wahl D E. Considerations for autofocus of spotlight-mode SAR imagery created using a beamforming algorithm[C]//Proceeding SPIE-Algorithms Synthetic Aperture Radar Imagery XVI, 2009, 7337: 1-9.
[16] Zhang L, Li H L, Qiao Z J, et al. Integrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1394-1398.
[17] Li H L, Chen L L, Zhang L, et al. Phase gradient autofocus within FFBP flow for spotlight SAR processing[J]. Journal of Xidian University, 2014, 41(3): 26-32.(in Chinese) 李浩林, 陈露露, 张磊, 等. 相位梯度自聚焦在FFBP聚束SAR处理中的应用[J]. 西安电子科技大学学报, 2014, 41(3): 26-32.
[18] Ash J N. An autofocus method for backprojection imagery in synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 104-108.
[19] Torgrimsson J, Dammert P, Hellsten H, et al. Factorized geometrical autofocus for synthetic aperture radar processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6674-6687.
[20] Yegulalp A F. Fast backprojection algorithm for synthetic aperture radar[C]//Proceedings of the 1999 11th IEEE Radar Conference, 1999: 60-65.
/
〈 | 〉 |