综述

锂离子电池发展现状及其前景分析

  • 闫金定
展开
  • 中华人民共和国科学技术部 基础研究管理中心, 北京 100862
闫金定 博士,副研究员,科技部基础研究管理中心。 Tel:010-58881073 E-mail:yanjd@vip.sina.com

收稿日期: 2014-06-09

  修回日期: 2014-07-18

  网络出版日期: 2014-07-23

Current Status and Development Analysis of Lithium-ion Batteries

  • YAN Jinding
Expand
  • Management Center of Basic Research, Ministry of Science and Technology of the People's Republic of China, Beijing 100862, China

Received date: 2014-06-09

  Revised date: 2014-07-18

  Online published: 2014-07-23

摘要

伴随着经济全球化的进程和能源需求的不断高涨,寻找新的储能装置已经成为新能源相关领域的关注热点。锂离子电池(LIB)是目前综合性能最好的电池体系,具有高比能量、高循环寿命、体积小、质量轻、无记忆效应、无污染等特点,并迅速发展成为新一代储能电源,用于信息技术、电动车和混合动力车、航空航天等领域的动力支持。LIB的核心和关键是新型储锂材料和电解质材料的开发与应用。本文综述了当前LIB关键材料研究和应用现状,特别是其在航空领域的应用技术发展;通过分析我国LIB产业发展情况及存在的问题,可以看出,在关键材料以及制造技术等方面我国还有很大的提升空间。

本文引用格式

闫金定 . 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014 , 35(10) : 2767 -2775 . DOI: 10.7527/S1000-6893.2014.0166

Abstract

With the progress of globalization and the increasing demand of energy, people are focusing on developing novel devices for energy storage. Compared with other storage batteries, lithium-ion battery (LIB) is a kind of chemical power sources with the best comprehensive performances, such as high specific energy, long cycle life, small volume, light weight, non-memory, and environment friendly, etc. LIB is widely applied to information technology, electric vehicles & hybrid-electric vehicles, aeronautics & astronautics, etc. The key point of LIB technology and industry are the development of novel lithium-storage materials and electrolyte materials. In this work, by analyzing the technology and industrialization of LIB as well as its application, especially in aeronautics, it is concluded that LIB industry in China has been dramatically developed. However, there are still many problems and weakness in the industry comparing to international advanced level, it is required to develop suitable LIB system and improve the manufacturing technology.

参考文献

[1] Huang K L, Wang Z X, Liu S Q. The principle and key technology of lithium ion batteries[M]. Beijing: Chemical Industry Press, 2008: 1-10. (in Chinese) 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术[M]. 北京: 化学工业出版社, 2008: 1-10.
[2] Padhi A K, Nanjundaseamy K S, Goodenough J B. Phospho-olivnes as positive electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[3] Nanjundaseamy K S, Padhi A K, Goodenough J B, et al. Synthesis redox potential evaluation and electrochemical characteristic of NASICON-related-3D framework compounds[J]. Solid State Ionics, 1996, 92(1-2): 1-10.
[4] Shi Z C, Yang Y. Progress in polyanion-type cathode materials for lithium ion batterires[J]. Progress in Chemistry, 2005, 17(4): 604-613. (in Chinese) 施志聪, 杨勇. 聚阴离子型锂离子电池正极材料研究进展[J]. 化学进展, 2005, 17(4): 604-613.
[5] Thomas M G, Bruce P G, Goodenough J B. Lithium mobility in the layered oxide Li1-xCoO2[J]. Solid State Ionics, 1985, 1(1): 13-19.
[6] Wu Y P, Dai X B, Ma J Q, et al. Lithium ion batteries: application and practice[M]. Beijing: Chemical Industry Press, 2004: 32-45. (in Chinese) 吴宇平, 戴晓兵, 马军旗, 等. 锂离子电池——应用与实践[M]. 北京: 化学工业出版社, 2004: 32-45.
[7] Jang Y I, Chiang Y M. Stability of the monoclinic and orthorhombic, phases of LiMnO2 with temperature, oxygen partial ressure, and Al doping[J]. Solid State Ionics, 2000, 130(1): 53-59.
[8] Storey C, Kargina I, Grincourt Y, et al. Electrochemical characterization of a new high capacity cathode[J]. Journal of Power Sources, 2001, 97-98: 541-544.
[9] Armstrong A R, Robertson A D, Bruce P G. Structural transformation on cycling layered Li(Mn1-yCoy)O2 cathode materials[J]. Electrochimica Acta, 1999, 45(1-2): 285-294.
[10] Xu M F, Li X H, Zhang Y H, et al. Synthesis and modification of layered LiMnO2[J]. Chinese Journal Power Sources, 2003, 27(4): 366-369. (in Chinese) 许名飞, 李新海, 张云河, 等. 层状锰酸锂的制备及改性[J]. 电源技术, 2003, 27(4): 366-369.
[11] Jiang J B, Du K, Cao Y B, et al. Synthesis of spherical LiMn2O4 with Mn3O4 and its electrochemistry performance[J]. Journal of Alloys and Compounds, 2013, 577(1): 138-142.
[12] Zhao S, Bai Y, Ding L H, et al. Enhanced cycling stability and thermal stability of YPO4-coated LiMn2O4 cathode materials for lithium ion batteries[J]. Solid State Ionics, 2013, 247(1): 22-29.
[13] Fan C L, Han S C, Li L F, et al. Structure and electrochemical performances of LiFe1-2xTixPO4C cathode doped with high valence Ti4+ by carbothermal reduction method[J]. Journal of Alloys and Compounds, 2013, 576(1): 18-23.
[14] Kim T H, Park J S, Chang S K, et al. The current move of lithium ion batteries towards the next phase[J]. Advanced Energy Materials, 2012, 2(7): 860-972.
[15] Mochida I, Ku C H, Korai Y. Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches[J]. Carbon, 2001, 39(3): 399-410.
[16] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochimica Acta, 1999, 45(1-2): 31-50.
[17] Feng C Q, Ma J, Li H, et al. Synthesis of molybdenum disulfide (MoS2 ) for lithium ion battery applications[J]. Materials Research Bulletin, 2009, 44(9): 1811-1815.
[18] Apostolova R, Shembel D, Talyosef I, et al. Study of electrolytic cobalt sulfide Co9S8 as an electrode material in lithium accumulator prototypes[J]. Russian Journal of Electrochemistry, 2009, 45(3): 311-319.
[19] Chan C K, Ruffo R, Hong S S, et al. Structural and electrochemical study of the reaction of lithium with silicon nanowires[J]. Journal of Power Sources, 2009, 189(1): 34-39.
[20] Xiang J Y, Tu J P, Wang X L, et al, Electrochemical performances of nanostructured Ni3P-Ni films electrodeposited on nickel foam substrate[J]. Journal of Power Sources, 2008, 185(1): 519-525.
[21] Choi J W, Cheruvally G, Ahn H J, et al. Electrochemical characteristics of room temperature LiFeS2 batteries with natural pyrite cathode[J]. Journal of Power Sources, 2006, 163(1): 158-165.
[22] Hu Y S, Kienle L, Guo Y G, et al. High lithium electroactivity of nanometer-sized rutile TiO2[J]. Advanced Materials, 2006, 18(11): 1421-1426.
[23] Vincent C A, Lithium batteries: a 50-year perspective, 1959—2009[J]. Solid State Ionics, 2000, 134(1-2): 159-167.
[24] Choi Z, Kramer D, Monig R. Correlation of stress and structural evolution in Li4Ti5O12-based electrodes for lithium ion batteries[J]. Journal of Power Sources, 2013, 240: 245-251.
[25] Li Z D, Zhang Y C, Xiang H F, et al. Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013, 240: 471-475.
[26] Morimoto H, Awano H, Terashima J, et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2-x(PO4)3 (x=0.3)obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell[J]. Journal of Power Sources, 2013, 240: 636-643.
[27] Liu Z Q, Tang Y F, Wang Y M, et al. High performance Li2S-P2S5 solid electrolyte induced by selenide[J]. Journal of Power Sources, 2014, 260: 264-267.
[28] Khurana R, Schaefer J L, Archer L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402.
[29] Chiappone A, Nair J R, Gerbaldi C, et al. Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible, safe and sustainable lithium-based batteries[J]. Cellulose, 2013, 20(5): 2439-2449.
[30] Marczewski M J, Stanje B, Hanzu I, et al. "Ionic liquids-in-salt" -a promising electrolyte concept for high-temperature lithium batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(24): 12341-12349.
[31] An P, Wang J. Application of lithium ion battery in national defense and military field[J]. Advance Materials Industry, 2006(9): 38-40. (in Chinese) 安平, 王剑. 锂离子电池在国防军事领域的应用[J]. 新材料产业, 2006(9): 38-40.
[32] Xu R. A bibliometrics analysis based on ISI Web of Knowledge data of Li-ion batteries for aerospace use[J]. Journal of Inteligence, 2013, 32(11): 28-33. (in Chinese) 徐睿. 基于ISI Web of Knowledge的航空用锂离子电池的计量[J]. 情报杂志, 2013, 32(11): 28-33.
[33] Dudley M, Misra A. Electric airplane power-system performance requirements[EB/OL]. (2009-04-24) [2014-05-28]. http://cafefoundation.org/v2/pdf_eas/2009/Michael Dudley_2009.pdf.
[34] NTSB Office of Aviation Safety. Interim factual report [EB/OL]. (2013-03-07)[2014-05-28]. http://www.ntsb.gov/investigations/2013/boeing_787/DCA13IA037%20interim%20factual%20report.pdf.
[35] Fang M, Zhao X, Chen J B, et al. A case study of Japan airlines B-787 battery fire[J]. Energy Storage Science and Technology, 2014, 3(1): 42-46. (in Chinese) 方谋, 赵骁, 陈敬波, 等. 从波音787电池事故分析大型动力电池组的安全性[J]. 储能科学与技术, 2014, 3(1): 42-46.
[36] Li L Y, Ren B. Present status of Li-ion battery industry in China and its worldwide applications[J]. Chinese Journal of Power Sources, 2013, 37(5): 883-885. (in Chinese) 李凌云, 任斌. 我国锂离子电池产业现状及国内外应用情况[J]. 电源技术, 2013, 37(5): 883-885.
文章导航

/