[1] Huang K L, Wang Z X, Liu S Q. The principle and key technology of lithium ion batteries[M]. Beijing: Chemical Industry Press, 2008: 1-10. (in Chinese) 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术[M]. 北京: 化学工业出版社, 2008: 1-10.
[2] Padhi A K, Nanjundaseamy K S, Goodenough J B. Phospho-olivnes as positive electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[3] Nanjundaseamy K S, Padhi A K, Goodenough J B, et al. Synthesis redox potential evaluation and electrochemical characteristic of NASICON-related-3D framework compounds[J]. Solid State Ionics, 1996, 92(1-2): 1-10.
[4] Shi Z C, Yang Y. Progress in polyanion-type cathode materials for lithium ion batterires[J]. Progress in Chemistry, 2005, 17(4): 604-613. (in Chinese) 施志聪, 杨勇. 聚阴离子型锂离子电池正极材料研究进展[J]. 化学进展, 2005, 17(4): 604-613.
[5] Thomas M G, Bruce P G, Goodenough J B. Lithium mobility in the layered oxide Li1-xCoO2[J]. Solid State Ionics, 1985, 1(1): 13-19.
[6] Wu Y P, Dai X B, Ma J Q, et al. Lithium ion batteries: application and practice[M]. Beijing: Chemical Industry Press, 2004: 32-45. (in Chinese) 吴宇平, 戴晓兵, 马军旗, 等. 锂离子电池——应用与实践[M]. 北京: 化学工业出版社, 2004: 32-45.
[7] Jang Y I, Chiang Y M. Stability of the monoclinic and orthorhombic, phases of LiMnO2 with temperature, oxygen partial ressure, and Al doping[J]. Solid State Ionics, 2000, 130(1): 53-59.
[8] Storey C, Kargina I, Grincourt Y, et al. Electrochemical characterization of a new high capacity cathode[J]. Journal of Power Sources, 2001, 97-98: 541-544.
[9] Armstrong A R, Robertson A D, Bruce P G. Structural transformation on cycling layered Li(Mn1-yCoy)O2 cathode materials[J]. Electrochimica Acta, 1999, 45(1-2): 285-294.
[10] Xu M F, Li X H, Zhang Y H, et al. Synthesis and modification of layered LiMnO2[J]. Chinese Journal Power Sources, 2003, 27(4): 366-369. (in Chinese) 许名飞, 李新海, 张云河, 等. 层状锰酸锂的制备及改性[J]. 电源技术, 2003, 27(4): 366-369.
[11] Jiang J B, Du K, Cao Y B, et al. Synthesis of spherical LiMn2O4 with Mn3O4 and its electrochemistry performance[J]. Journal of Alloys and Compounds, 2013, 577(1): 138-142.
[12] Zhao S, Bai Y, Ding L H, et al. Enhanced cycling stability and thermal stability of YPO4-coated LiMn2O4 cathode materials for lithium ion batteries[J]. Solid State Ionics, 2013, 247(1): 22-29.
[13] Fan C L, Han S C, Li L F, et al. Structure and electrochemical performances of LiFe1-2xTixPO4C cathode doped with high valence Ti4+ by carbothermal reduction method[J]. Journal of Alloys and Compounds, 2013, 576(1): 18-23.
[14] Kim T H, Park J S, Chang S K, et al. The current move of lithium ion batteries towards the next phase[J]. Advanced Energy Materials, 2012, 2(7): 860-972.
[15] Mochida I, Ku C H, Korai Y. Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches[J]. Carbon, 2001, 39(3): 399-410.
[16] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochimica Acta, 1999, 45(1-2): 31-50.
[17] Feng C Q, Ma J, Li H, et al. Synthesis of molybdenum disulfide (MoS2 ) for lithium ion battery applications[J]. Materials Research Bulletin, 2009, 44(9): 1811-1815.
[18] Apostolova R, Shembel D, Talyosef I, et al. Study of electrolytic cobalt sulfide Co9S8 as an electrode material in lithium accumulator prototypes[J]. Russian Journal of Electrochemistry, 2009, 45(3): 311-319.
[19] Chan C K, Ruffo R, Hong S S, et al. Structural and electrochemical study of the reaction of lithium with silicon nanowires[J]. Journal of Power Sources, 2009, 189(1): 34-39.
[20] Xiang J Y, Tu J P, Wang X L, et al, Electrochemical performances of nanostructured Ni3P-Ni films electrodeposited on nickel foam substrate[J]. Journal of Power Sources, 2008, 185(1): 519-525.
[21] Choi J W, Cheruvally G, Ahn H J, et al. Electrochemical characteristics of room temperature LiFeS2 batteries with natural pyrite cathode[J]. Journal of Power Sources, 2006, 163(1): 158-165.
[22] Hu Y S, Kienle L, Guo Y G, et al. High lithium electroactivity of nanometer-sized rutile TiO2[J]. Advanced Materials, 2006, 18(11): 1421-1426.
[23] Vincent C A, Lithium batteries: a 50-year perspective, 1959—2009[J]. Solid State Ionics, 2000, 134(1-2): 159-167.
[24] Choi Z, Kramer D, Monig R. Correlation of stress and structural evolution in Li4Ti5O12-based electrodes for lithium ion batteries[J]. Journal of Power Sources, 2013, 240: 245-251.
[25] Li Z D, Zhang Y C, Xiang H F, et al. Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013, 240: 471-475.
[26] Morimoto H, Awano H, Terashima J, et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2-x(PO4)3 (x=0.3)obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell[J]. Journal of Power Sources, 2013, 240: 636-643.
[27] Liu Z Q, Tang Y F, Wang Y M, et al. High performance Li2S-P2S5 solid electrolyte induced by selenide[J]. Journal of Power Sources, 2014, 260: 264-267.
[28] Khurana R, Schaefer J L, Archer L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402.
[29] Chiappone A, Nair J R, Gerbaldi C, et al. Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible, safe and sustainable lithium-based batteries[J]. Cellulose, 2013, 20(5): 2439-2449.
[30] Marczewski M J, Stanje B, Hanzu I, et al. "Ionic liquids-in-salt" -a promising electrolyte concept for high-temperature lithium batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(24): 12341-12349.
[31] An P, Wang J. Application of lithium ion battery in national defense and military field[J]. Advance Materials Industry, 2006(9): 38-40. (in Chinese) 安平, 王剑. 锂离子电池在国防军事领域的应用[J]. 新材料产业, 2006(9): 38-40.
[32] Xu R. A bibliometrics analysis based on ISI Web of Knowledge data of Li-ion batteries for aerospace use[J]. Journal of Inteligence, 2013, 32(11): 28-33. (in Chinese) 徐睿. 基于ISI Web of Knowledge的航空用锂离子电池的计量[J]. 情报杂志, 2013, 32(11): 28-33.
[33] Dudley M, Misra A. Electric airplane power-system performance requirements[EB/OL]. (2009-04-24) [2014-05-28]. http://cafefoundation.org/v2/pdf_eas/2009/Michael Dudley_2009.pdf.
[34] NTSB Office of Aviation Safety. Interim factual report [EB/OL]. (2013-03-07)[2014-05-28]. http://www.ntsb.gov/investigations/2013/boeing_787/DCA13IA037%20interim%20factual%20report.pdf.
[35] Fang M, Zhao X, Chen J B, et al. A case study of Japan airlines B-787 battery fire[J]. Energy Storage Science and Technology, 2014, 3(1): 42-46. (in Chinese) 方谋, 赵骁, 陈敬波, 等. 从波音787电池事故分析大型动力电池组的安全性[J]. 储能科学与技术, 2014, 3(1): 42-46.
[36] Li L Y, Ren B. Present status of Li-ion battery industry in China and its worldwide applications[J]. Chinese Journal of Power Sources, 2013, 37(5): 883-885. (in Chinese) 李凌云, 任斌. 我国锂离子电池产业现状及国内外应用情况[J]. 电源技术, 2013, 37(5): 883-885.