论文

国产CCF300碳纤维及其NCF织物的性能

  • 李阳 ,
  • 肇研 ,
  • 刘刚 ,
  • 李书乡 ,
  • 李龙 ,
  • 李烨
展开
  • 1. 北京航空航天大学 材料科学与工程学院, 北京 100191;
    2. 北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095;
    3. 威海拓展纤维有限公司, 山东 威海 264209
李阳 男,硕士研究生。主要研究方向:碳纤维及树脂基复合材料。 Tel:010-82317127 E-mail:15210968902@163.com;肇研 女,博士,教授,博士生导师。主要研究方向:先进树脂基复合材料与功能复合材料。 Tel:010-82317127 E-mail:jennyzhaoyan@buaa.edu.cn;刘刚 男,博士,高级工程师。主要研究方向:树脂基复合材料。 Tel:010-62496760 E-mail:liugang@iccas.ac.cn;李书乡 男,硕士,高级工程师。主要研究方向:高性能碳纤维及制品研发。 Tel:0631-5627563 E-mail:rsxl@whtuozhan.cn

收稿日期: 2014-04-15

  修回日期: 2014-07-08

  网络出版日期: 2014-07-22

Properties of Domestic CCF300 Carbon Fiber and Its NCP Fabrics

  • LI Yang ,
  • ZHAO Yan ,
  • LIU Gang ,
  • LI Shuxiang ,
  • LI Long ,
  • LI Ye
Expand
  • 1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. The National Key Laboratory of Advanced Composites, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
    3. Weihai Tuozhan Fiber Co. Ltd., Weihai 264209, China

Received date: 2014-04-15

  Revised date: 2014-07-08

  Online published: 2014-07-22

摘要

为牵引和推动国产碳纤维及其织物在复合材料液体成型技术中的进一步应用,对国产CCF300碳纤维表面特性、CCF300 45°/-45°和CCF300 0°/90°两种非屈曲经编织物(NCF)的编织工艺性、铺覆变形性以及NCF织物增强复合材料的力学性能进行了系统表征。研究结果表明:国产CCF300碳纤维表面物化活性较高;CCF300 0°/90°编织织物的编织工艺更稳定;NCF织物增强复合材料具有与单向织物增强复合材料相当的力学性能,同时兼具良好的结构稳定性、铺覆性和成型性,具备成为复杂形状预成型体的可行性。

本文引用格式

李阳 , 肇研 , 刘刚 , 李书乡 , 李龙 , 李烨 . 国产CCF300碳纤维及其NCF织物的性能[J]. 航空学报, 2014 , 35(10) : 2889 -2900 . DOI: 10.7527/S1000-6893.2014.0150

Abstract

Surface features of domestic CCF300 carbon fiber, manufacturability, drapability of two types of non-crimp fabrics (NCF, CCF300 45°/-45° and CCF300 0°/90°) and the mechanical properties of NCF reinforced composites are investigated in order to promote the further application of domestic carbon fiber and its NCF in liquid composites molding. The results show that the surface of the domestic CCF300 carbon fiber has high chemical and physical activity. And the NCF of CCF300 0°/90° shows good weaving quality. It is demonstrated that the NCF reinforced composites have the comparativemechanical properties with the unidirectional fabric reinforced composites. Thanks to the combination of good dimensional stability, drapability and formability, NCF has great potential to displace the traditional fabrics.

参考文献

[1] Zhao J X. Development and prospect of carbon fibers in the world[J]. Advanced Materials Industry, 2012(8): 13-16. (in Chinese) 赵稼祥. 世界碳纤维发展及前景[J]. 新材料产业, 2012(8): 13-16.
[2] Zhao Y, Duan Y X, Xiao H. Study on the surface properties of carbon fibers affected by sizing agent[J]. Journal of Materials Engineering, 2007(增刊1): 121-126.(in Chinese) 肇研, 段跃新, 肖何. 上浆剂对碳纤维表面性能的影响[J]. 材料工程, 2007(Suppl.1): 121-126.
[3] Yang Z, Zhao Y, Chen D, et al. Characterization of carbon fiber surface and analysis its effect on interfacial property of the composite[C]//17th National Conference on Composite Materials. Beijing: Beijing Zhonghang Era Culture Communication Co. Ltd., 2012: 1090-1094.(in Chinese) 杨喆, 肇研, 陈达, 等. 国产碳纤维表面特性分析及其对复合材料微观界面性能的影响[C]//第17届全国复合材料学术会议论文集. 北京: 北京中航时代文化传播有限公司, 2012: 1090-1094.
[4] Zhang L J, Zhao Y, Luo Y F, et al. On the interfacial properties of CCF300/QY8911 composite with cyclical hygrothermal treatments[J]. Journal of Materials Engineering, 2012(2): 25-49.(in Chinese) 张利军, 肇研, 罗云烽, 等. 湿热循环对CCF300/QY8911复合材料界面性能的影响[J]. 材料工程, 2012(2): 25-49.
[5] Feng T B, Zhao Y, Luo Y F, et al. Hygrothermal property of CCF/BMI composites with different sizing on the carbon fiber[J]. Journal of Materials Engineering, 2009(10): 36-40.(in Chinese) 封彤波, 肇研, 罗云烽, 等. 不同上浆剂的国产碳纤维复合材料湿热性能研究[J]. 材料工程, 2009(10): 36-40.
[6] Zhang L J. On the characterization methods of T300 carbon fiber NCF and the properties of NCF composites[D]. Beijing: Beihang University, 2012.(in Chinese) 张利军. T300碳纤维NCF织物表征及复合材料性能研究[D]. 北京: 北京航空航天大学, 2012.
[7] Xu Y J. Characterization and analysis of properties of non-crimp fabric[D]. Beijing: Beihang University, 2013.(in Chinese) 许燕杰. NCF织物的性能表征与分析[D]. 北京: 北京航空航天大学, 2013.
[8] Hivet G, Allaoui S, Soulat D, et al. Analysis of woven reinforced preforming using an experiment approach[C]//17th International Conference on Composite Materials. Edinburgh: International Committee on Composites Materials, 2009.
[9] Lomov S, Verpoest I, Barburski M, et al. Carbon composites based on multiaxial multiply stitched preforms. Part 2. KES-F characterisation of the deformability of the preforms at low loads[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(4): 359-370.
[10] Lomov S, Barburski M, Stoilova T, et al. Carbon composites based on multiaxial multiply stitched preforms. Part 3: Biaxial tension, picture frame and compression tests of the preforms[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(9): 1188-1206.
[11] Mattsson D. Mechanical performance of NCF composi-tes[D]. Lulea: Lulea University of Technology, 2005.
[12] Lomov S, Belov E, Bischoff T, et al. Carbon composites based on multiaxial multiply stitched preforms. Part 1. Geometry of the preform[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(9): 1171-1183.
[13] Truong T C, Vettori M, Lomov S, et al. Carbon composites based on multi-axial multi-ply stitched preforms. Part 4. Mechanical properties of composites and damage observation[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(9): 1207-1221.
[14] Vallons K, Zong M, Lomov S V, et al. Carbon composites based on multi-axial multi-ply stitched preforms—Part 6. Fatigue behaviour at low loads: stiffness degradation and damage development[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(7): 1633-1645.
[15] Truong T, Ivanov D, Klimshin D, et al. Carbon composites based on multi-axial multi-ply stitched preforms. Part 7: Mechanical properties and damage observations in composites with sheared reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(9): 1380-1393.
[16] Thije R T, Loendersloot R, Akkerman R. Drape simulation of non-crimp fabrics[C]//8th Esaform Conference on Material Forming. Cluj-Napoca: University of Twente, 2005.
[17] Bel S, Hamila N, Boisse P, et al. Finite element model for NCF composite reinforcement preforming: importance of inter-ply sliding[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(12): 2269-2277.
[18] Creech G, Pickett A K. Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis[J]. Journal of Materials Science, 2006, 41(20): 6725-6736.
[19] Peng X Q, Cao J. A dual homogenization and finite element approach for material characterization of textile composites[J]. Composites Part B: Engineering, 2002, 33(1): 45-46.
[20] Yu W, Harrison P, Long A. Finite element forming simulation of NCF considering natural variability of fiber direction[C]//8th Esaform Conference on Material Forming. Cluj-Napoca: University of Twente, 2005.
[21] Yu W, Harrison P, Long A. Ideal forming of non-crimp fabric preforms through optimization of blank shape and blank holding force[C]//7th Esaform Conference on Material Forming. Trondheim: University of Nottingham, 2004.
[22] Mattsson D. Mechanical performance of NCF composi-tes[D]. Lulea: Lulea University of Technology, 2005.
[23] Ding J P, Pan L J, Fan X Y, et al. Study on the mechanical properties of domestic CCF300 carbon fiber four axial directions non-crimp fabric laminates[J]. Hi-Tech Fiber & Application, 2010, 35(5): 26-31.(in Chinese) 丁江平, 潘利剑, 范欣愉, 等. 国产CCF300碳纤维4轴向无屈曲织物层合板力学性能对比研究[J]. 高科技纤维与应用, 2010, 35(5): 26-31.
[24] Han S, Duan Y X, Li C, et al. Bending properties of non-crimp stitched carbon fabric reinforced composites of different knit patterns[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 52-57.(in Chinese) 韩帅, 段跃新, 李超, 等. 不同针织结构经编碳纤维复合材料弯曲性能[J]. 复合材料学报, 2011, 28(5): 52-57.
[25] Li L, Duan Y X, Li B P, et al. The effect of locked stitching on mechanical properties of different preforms reinforced composites[C]//17th National Conference on Composite Materials. Beijing: Beijing Zhonghang Era Culture Communication Co. Ltd., 2012: 644-649.(in Chinese) 李龙, 段跃新, 李保鹏, 等. 锁式缝合对不同预成型体T700/6421复合材料力学性能的影响[C]//第17届全国复合材料学术会议论文集. 北京: 北京中航时代文化传播有限公司, 2012: 644-649.
[26] Li L, Duan Y X, Li C, et al. Mechanical properties of bi-axial warp-knitted fabric T700/BMI6421 composite[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 92-97.(in Chinese) 李龙, 段跃新, 李超, 等. 双轴向经编织物T700/BMI6421复合材料力学性能[J]. 复合材料学报, 2011, 28(6): 92-97.
[27] Zhu J J, Duan Y X, Chen J P, et al. Packifier parameters and permeability characteristics of non-crimp stitched carbon fabrics[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 42-48.(in Chinese) 祝君军, 段跃新, 陈吉平, 等. 碳纤维经编织物定型参数及渗透特性[J]. 复合材料学报, 2012, 29(3): 42-48.
[28] Dong A, Zhao X, Zhang L, et al. NCF/BMI composites materials: effect of stitching threads[C]//The 19th International Conference on Composite Materials. Montreal: International Committee on Composites Materials, 2013.
[29] Wang Y S, Zhu S S, Yao S R, et al. Surface modification of carbon fiber and its impact on the performance of composite materials[J]. Polymer Materials Science & Engineering, 2014, 30(2): 17-20.(in Chinese) 王源升, 朱珊珊, 姚树人, 等. 碳纤维表面改性及对其复合材料性能的影响[J]. 高分子材料科学与工程, 2014, 30(2): 17-20.
[30] Wang Y F, Peng G Q, Xie F Y, et al. Effect of surface properties of domestic T700 grade carbon fiber on hygrothermal performance of BMI composites[J]. Aeronautical Manufacturing Technology, 2014(3): 90-97.(in Chinese) 王迎芬, 彭公秋, 谢富原, 等. 国产T700级碳纤维表面特性对BMI复合材料湿热性能的影响[J]. 航空制造技术, 2014(3): 90-97.
[31] Zhang S, Tian Y H, Zhang X J, et al. Effect of electrochemical oxidation on the surface structure and mechanical performance of high strength and high modulus carbon fibers[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 1-8.(in Chinese) 张莎, 田艳红, 张学军, 等. 电化学氧化对高强高模碳纤维表面结构及力学性能的影响[J]. 复合材料学报, 2012, 29(3): 1-8.
[32] Xu F H, Lin Z W, Yang N B, et al. GB/T 3354 Test method for tensile properties of oriented fiber reinforced plastics[S]. Beijing: Standards Press of China, 2006.(in Chinese) 许凤和, 林再文, 杨乃宾, 等. GB/T 3354 定向纤维增强塑料拉伸性能试验方法[S]. 北京: 中国标准出版社, 2006.
[33] Zhou Z L, Zhang R Z, Zhang S Y, et al. GB/T 5258 Test method for compression properties of fiber reinforced plastics thin laminates[S]. Beijing: Standards Press of China, 2006.(in Chinese) 周祝林, 张瑞珠, 张双寅, 等. GB/T 5258 纤维增强塑料面内压缩性能试验方法[S]. 北京: 中国标准出版社, 2006.
[34] Xu F H, Yang N B, Li J C, et al.GB/T 3356 Test standard for bending property of directional fiber reinforced plastic[S]. Beijing: Standards Press of China, 2006. 许凤和, 杨乃宾,李建成, 等.GB/T 3356 单向纤维增强塑料弯曲性能试验方法[S]. 北京: 中国标准出版社, 2006.
[35] Wang L Y, Qin Z J, Yang N B, et al. JC/T 773 Test method for interply shear strength of undirctional fiber reinforced plastics[S]. Beijing: Standards Press of China, 2006.(in Chinese) 王连玉, 秦志敬, 杨乃宾, 等. JC/T 773 纤维增强塑料短梁法测定层间剪切强度[S].北京: 中国标准出版社, 2006.
[36] Qian X, Zhi J H, Chen L Q, et al. Effect of low current density electrochemical oxidation on the properties of carbon fiber-reinforced epoxy resin composites[J]. Surface and Interface Analysis, 2013, 45(5): 937-942.
[37] Sun P. Fiber reinforced polymer matrix composites’ micro interface properties research[D]. Beijing: Beihang University, 2011.(in Chinese) 孙沛. 碳纤维增强树脂基复合材料微观界面性能的研究[D]. 北京: 北京航空航天大学, 2011.
[38] Kim T H, Vijayalakshmi S, Son S J, et al. A combined study of preparation and characterization of carbon molecular sieves for carbon dioxide adsorption from coals of different origin[J]. Journal of Industrial, 2003, 9(5): 481-487.
[39] Song W, Gu A J, Liang G Z, et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J]. Applied Surface Science, 2011, 257(9): 4069-4074.
[40] Nguyen F N, Nakayama Y, Kobayashi D, et al. Carbon fiber’s surface and its effects on an interphase formation for ultimate and hesion-related performance[C]//Conference of the Society for the Advancement of Material and Process Engineering. Baltimore: the Society for the Advancement of Material and Process Engineering, 2012.
文章导航

/