论文

23Co14Ni12Cr3Mo超高强度钢DCB试样在3.5%NaCl溶液中的应力腐蚀开裂行为

  • 文陈 ,
  • 于美 ,
  • 李松梅 ,
  • 刘建华
展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
文陈 男,博士研究生。主要研究方向:航空材料腐蚀,表面防护技术。 Tel:010-82317103 E-mail:wenchen@mse.buaa.edu.cn;刘建华 男,博士,教授,博士生导师。主要研究方向:材料腐蚀与防护、材料表面工程,微生物腐蚀、纳米能源材料。 Tel:010-82317103 E-mail:liujh@buaa.edu.cn

收稿日期: 2014-04-22

  修回日期: 2014-07-08

  网络出版日期: 2014-07-18

基金资助

国家自然科学基金(51171011)

Stress Corrosion Cracking Behavior of 23Co14Ni12Cr3Mo Ultra-high Strength Steel in 3.5% NaCl Solution by DCB Specimens

  • WEN Chen ,
  • YU Mei ,
  • LI Songmei ,
  • LIU Jianhua
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-04-22

  Revised date: 2014-07-08

  Online published: 2014-07-18

Supported by

National Natural Science Foundation of China (51171011)

摘要

23Co14Ni12Cr3Mo 超高强度钢具有优异的强韧性配合,逐步取代现役的超高强度钢,被广泛地应用于起落架等航空关键承力构件中。研究了23Co14Ni12Cr3Mo 超高强度钢的应力腐蚀开裂(SCC)行为,对该材料的安全可靠应用具有重要的意义。采用双悬臂(DCB)试样研究了23Co14Ni12Cr3Mo超高强度钢在3.5%NaCl溶液中的SCC分叉行为,为该材料在航空航天领域安全可靠地使用提供了理论数据。采用扫描电子显微镜(SEM)对试验开裂后的断口形貌进行了表征,采用X射线电子衍射技术(XRD)结合能谱(EDS)技术对腐蚀产物进行分析。结果表明应力腐蚀裂纹扩展分叉,断口形貌在裂纹扩展前期、中期和后期分别为穿晶(TG)形貌、穿晶伴随沿晶(IG)形貌并含有二次微裂纹以及沿晶脆性断裂。该超高强度钢腐蚀产物主要包括Fe、Cr、Co的氧化物,结合Co、Cr、Ni、Mo在应力腐蚀过程中的变化,讨论了裂纹扩展分叉机理。

本文引用格式

文陈 , 于美 , 李松梅 , 刘建华 . 23Co14Ni12Cr3Mo超高强度钢DCB试样在3.5%NaCl溶液中的应力腐蚀开裂行为[J]. 航空学报, 2014 , 35(10) : 2873 -2880 . DOI: 10.7527/S1000-6893.2014.0153

Abstract

With high strength and toughness, 23Co14Ni12Cr3Mo ultra-high strength steel, instead of other ultra-high strength steels, is widely used in bearing components such as landing gears. It is of great significance for safe and reliable application of 23Co14Ni12Cr3Mo ultra-high strength by investigating its stress corrosion cracking (SCC) behavior. The bifurcation behavior in SCC propagation of ultra-high strength steel 23Co14Ni12Cr3Mo is investigated by using double cantilever beam (DCB) specimens in 3.5 % NaCl solution, which provides theoretical supports for the safety application of the material as landing gear. The SCC morphology is observed by using scanning electron microscopy (SEM) and the composition of corrosion products is analyzed by using X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The results show that the corrosion crack propagates to bifurcations and the fracture morphology is transgranular (TG) brittle cracking at prophase of crack propagation, TG cracking along with intergranular (IG) cracking factors in some regions,especially some second cracks at metaphase, and TG and brittle cracking at anaphase. The corrosion products consist of Fe, Cr and Co oxides. Effects of the elements Co, Cr, Ni, and Mo on the crack propagation are discussed.

参考文献

[1] Atrens A, Ramamurthy S. The influence of applied stress rate on the stress corrosion cracking of 4340 and 3.5NiCrMoV steels in distilled water at 30 ℃[J]. Corrosion Science, 2010, 52(3): 1042-1051.
[2] Muhammed K, Singh R, Khoddam R K. Stress corrosion cracking of novel steel for automotive applications[J]. Procedia Engineering, 2011, 10(1): 3381-3386.
[3] Liang P, Li X G, Du C W, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Materials and Design, 2009, 3(5) : 1712-1717.
[4] Eliaz N, Shachar A, Tal B, et al. Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels[J]. Engineering Failure Analysis, 2002, 9(2): 167-184.
[5] Hu Y B, Dong C F, Sun M, et al. Effects of solution pH and Cl- on electrochemical behavior of an Aermet100 ultra-high strength steel in acidic environments[J]. Corrosion Science, 2011, 53(12): 4159-4165.
[6] Ji G L, Li F G, Li Q H, et al. Research on the dynamic recrystallization kinetics of Aermet 100 steel[J]. Materials Science and Engineering A, 2010, 527(9): 2350-2355.
[7] Li D M, Gangloff R P, Scully J R. Hydrogen trap states in ultrahigh-strength AerMet 100 steel[J]. Metallurgical and Materials Transactions A, 2004, 35(3): 849-864.
[8] Thomas R L S, Scully J R, Gangloff R P. Internal hydrogen embrittlement of ultrahigh-strength AerMET 100 steel[J]. Metallurgical and Materials Transactions A, 2003, 34(2): 327-344.
[9] Oehlert A, Atrens A. Stress corrosion crack propagation in AerMet 100[J]. Journal of Materials Science, 1998, 33(3): 775-781.
[10] Contreras A, Albiter A, Sallazar M, et al. Slow strain rate corrosion and fracture characteristics of X-52 and X-70 pipeline steels[J]. Matrerial Science and Engineering: A, 2005, 407(1-2): 45-52.
[11] Mohammad H M. Crack growth behavoir of pipeline steels in near neutral pH soil environment[D]. Edmonton: University of Alberta, 2010: 83-123.
[12] Zheng C L, Lv B, Zhang F C, et al. Effect of secondary cracks on hydrogen embrittlement of bainitic steels[J]. Material Science and Engineering: A, 2012, 547: 99-103.
[13] Zhong J Y, Sun M, Liu D B, et al. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(3): 282-289.
[14] Hallberg H, Leslie B S, Matti R. Crack tip transformation zones in austenitic stainless steel[J]. Engineering Fracture Mechanics, 2012, 79: 266-280.
[15] Chen Y Y, Chou L B, Shih H C. Effect of solution pH on the electrochemical polarization and stress corrosion cracking of alloy 690 in 5M NaCl at room temperature[J]. Materials Science and Engineering: A, 2005, 396(1-2): 129-137.
[16] Papadopoulos M P, Apostolopoulos C A, Alexopoulos N D, et al. Effect of salt spray corrosion exposure on the mechanical performance of different technical class reinforcing steel bars[J]. Materials and Design, 2007, 28(8): 2318-2328.
[17] Liu J H, Tian S, Li S M, et al. Stress corrosion cracking behavior of new type ultra-high strength steel[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1164-1170. (in Chinese) 刘建华, 田帅, 李松梅, 等. 新型超高强钢应力腐蚀断裂行为研究[J]. 航空学报, 2011, 32(6): 1164-1170.
[18] Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment[J]. Materials Engineering, 2012(1): 42-50. (in Chinese) 于美, 董宇, 王瑞阳, 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为[J]. 材料工程,2012(1): 42-50.
[19] Albarran J L, Martinez L, Lopez H F. Effect of heat treatment on the stress corrosion resistance of a microalloyed pipeline steel[J]. Corrosion Science, 1999, 41(6): 1031-1049.
文章导航

/