Nb-Si金属间化合物基超高温合金研究进展
收稿日期: 2014-05-08
修回日期: 2014-07-07
网络出版日期: 2014-07-14
基金资助
国家自然科学基金(51101005)
Research Progress on Ultra-high-temperature Nb-silicide-based Alloys
Received date: 2014-05-08
Revised date: 2014-07-07
Online published: 2014-07-14
Supported by
National Natural Science Foundation of China (51101005)
Nb-Si金属间化合物基超高温合金(Nb-Si基合金)具有高熔点、低密度和良好的加工性能,目标使用温度达到1 200~1 400 ℃,成为用于新一代高推重比航空发动机热端部件最有潜力的候选材料。主要介绍了北京航空航天大学在Nb-Si金属间化合物基超高温合金领域的研究成果,包括合金化、加工制备技术(电弧熔炼、感应熔炼、定向凝固和粉末冶金)、组织控制与性能表征和热防护涂层材料体系设计与制备技术等。发展了Y2O3坩埚真空感应熔炼和Y2O3模壳精密成型顺序凝固技术,成功制备了涡轮叶片模拟件;发展了Al2O3/Y2O3、Y2O3/Y2O3陶瓷坩埚/模壳液态金属冷却定向凝固技术,实现了Nb-Si基合金的定向凝固组织控制和强韧化匹配;发展了热防护涂层材料体系和制备技术,在合金基体和涂层的高温抗氧化方面均取得了较大的进展。
关键词: Nb-Si基超高温合金; 合金化; 工艺优化; 定向凝固; 热防护涂层
张虎 , 原赛男 , 周春根 , 沙江波 , 赵新青 , 贾丽娜 . Nb-Si金属间化合物基超高温合金研究进展[J]. 航空学报, 2014 , 35(10) : 2756 -2766 . DOI: 10.7527/S1000-6893.2014.0138
With higher melting points, relatively lower densities and good processability, Nb-Si based alloys show great promise for application as the next generation turbine airfoil materials with the operating temperature of 1 200-1 400 ℃. This paper introduces main research achievements of Beihang University in the field of ultra-high-temperature Nb-Si based alloys, mainly including alloying design, processing technologies (arc melting, induction melting, directional solidification, powder metallurgy), thermal protection coating material design and preparation technology and so on. Vacuum induction melting and precision molding with Y2O3 crucible are developed and used for successful preparation of simulated turbine blade. The liquid metal cooling directional solidification with Al2O3/Y2O3, Y2O3/Y2O3 crucible/mould is developed, with which the microstructures of directionally solidified Nb-Si based alloy are optimized to attain the balance of strength and toughness. Thermal protection coating material design and preparation technology are studied and great progress in high temperature oxidation resistance of alloy substrate and coating are attained.
[1] Bewlay B P, Jackson M R, Zhao J C, et al. Ultrahigh-temperature Nb-silicide-based composites[J]. Materials Research Society Bulletin, 2003, 28(9): 646-653.
[2] Ubramanian P R, Mendiratta M G, Dimiduk D M. The development of Nb-based advanced intermetallic alloys for structural applications[J]. Journal of the Minerals Metals and Materials Society, 1996, 48(1): 33-34.
[3] Bewlay B P, Jackson M R, Lipsitt H A. The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite[J]. Metallurgical and Materials Transactions A, 1996, 27(12): 3801-3808.
[4] Rigney J D, Lewandowksi J J. Loading rate and test temperature effects on fracture of in situ niobium silicide-niobium composites[J]. Metallurgical and Materials Transactions A, 1996, 27(10): 3292-3306.
[5] Bewlay B P, Jackson M R, Subramanian P R. Processing high-temperature refractory-metal silicide in situ composites[J]. Journal of the Minerals Metals and Materials Society, 1999, 51 (4): 32-36.
[6] Bewlay B P, Jackson M R, Zhao J C, et al. A review of very-high-temperature Nb-silicide-based composites[J]. Metallurgical and Materials Transactions A, 2003, 34 (10): 2043-2052.
[7] Jackson M R, Bewlay B P, Zhao J C. Niobium-silicide based composites resistant to high temperature oxidation: America, US0066578[P]. 2003-04-10.
[8] Bewlay B P, Lipsitt H A, Jackson M R, et al. Solidification processing of high temperature intermetallic eutectic-based alloys[J]. Materials Science and Engineering A, 1995, A192-19(pt2): 534-543.
[9] Bewlay B P, Sutliff J A, Lipsitt H A, et al. Microstructural and crystallographic relationships in directionally solidified Nb/Cr2Nb and Cr/Cr2Nb eutectics[J]. Acta Materialia, 1994, 42(8): 2869-2878.
[10] Liu C T, Zhu J H, Brady M P, et al. Physical metallurgy and mechanical properties of transition-metal laves phase alloys[J]. Intermetallics, 2000, 8(9): 1119-1129.
[11] Lu S Q, Huang B Y, He Y H, et al. Mechanical properties of Laves phase alloys[J]. Materials Engineering, 2003(5): 43-47. (in Chinese) 鲁世强,黄伯云,贺跃辉,等. Laves 相合金的力学性能[J]. 材料工程, 2003(5): 43-47.
[12] Ma C L, Tanaka H, Kasama A, et al. Microstructures and high-temperature strength of Nb-based alloys reinforced with in-situ silcide[C]//High Temperature Ordered Intermentallic Alloys IX, 2000: 1-6.
[13] Fujikara M, Kasama A, Tannaka R, et al. Effect of alloy chemistry on the high temperature strengths and room temperature fracture toughness of advanced Nb-based alloys[J]. Materials Transactions, 2004, 45(2): 493-501.
[14] Vellios N, Tsakiropoulos P. Study of the role of Fe and Sn additions in the microstructure of Nb-24Ti-18Si-5Cr silicide based alloys[J]. Intermetallics, 2010, 18(9): 1729-1736.
[15] Vellios N, Tsakiropoulos P. The role of Fe and Ti additions in the microstructure of Nb-18Si-5Sn silicide based alloys[J]. Intermetallics, 2007, 15(12): 1529-1537.
[16] Su L F, Jia L N, Feng Y B, et al. Microstructure and room-temperature fracture toughness of directionally solidified Nb-Si-Ti-Cr-Al-Hf alloy[J]. Materials Science and Engineering A, 2013, 560: 672-677.
[17] Sha J B, Yang C Y, Liu J. Toughening and strengthening behavior of an Nb-8Si-20Ti-6Hf alloy with addition of Cr[J]. Scripta Materialia, 2010, 62(11): 859-862.
[18] Qu S Y, Han Y F, Kang Y W. Effects of alloying elements on phase stability in Nb-Si system intermetallics materials[J]. Intermetallics, 2007,15(5): 810-813.
[19] Yu J L, Zhang K F, Li Z K, et al. Fracture toughness of a hot-extruded multiphase Nb-10Si-2Fe in situ composite[J].Scripta Materialia, 2009, 61 (6): 620-623.
[20] Tian Y X, Guo J T, Sheng L Y. Microstructures and mechanical properties of cast Nb-Ti-Si-Zr alloys[J]. Intermetallics, 2008, 16 (6) : 807-812.
[21] Yao C F, Guo X P, Guo H S. Microstructural characteristics of integrally directionally solidified Nb-Ti-Si base ultrahigh temperature alloy with crucibles[J]. Acta Metallurgica Sinica, 2008, 44(5): 579-584. (in Chinese) 姚成方,郭喜平,郭海生. Nb-Ti-Si基超高温合金的有坩埚整体定向凝固组织分析[J]. 金属学报, 2008, 44(5): 579-584.
[22] Bao J, Huang Q, Tang L, et al. Liquid-solid phase equilibria of Nb-Si-Ti ternary alloys[J]. Chinese Journal of Aeronautics, 2008, 21(3): 275-280.
[23] Xu H B, Sha J B, Zhang H, et al. Progress in Nb-Si intermetallics and thermal barrier coatings for high temperature applications[C]//International Conference on Advanced Materials Development and Performance, 2008.
[24] Sha J B, Hirai H, Tabaru T, et al. Effect of carbon on microstructure and high-temperature strength of Nb-Mo-Ti-Si in situ composites prepared by arc-melting and directional solidification[J]. Materials Science and Engineering A, 2003, 343(1): 282-289.
[25] Jiang R L, Liu D M, Sha J B, et al. High-temperature oxidation behavior of Nb-15W-18Si-xHf (x=0, 5 and 10) alloys[J]. Transactions of Nonferrous Metals Society of China, 2006, 16 (3): S2009-S2012.
[26] Zheng P, Sha J B, Liu D M, et al. Effect of Hf on high-temperature strength and room temperature ductility of Nb-15W-0.5Si-2B alloys[J]. Materials Science and Engineering A, 2008, 483-484(1-2C): 656-659.
[27] Sha J B, Hirai H, Tabaru T, et al. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures[J]. Metallurgical and Materials Transactions A, 2003, 34(1): 85-94.
[28] Li X J, Chen H F, Sha J B, et al. The effects of melting technologies on the microstructures and properties of Nb-16Si-22Ti-2Al-2Hf-17Cr alloy[J]. Materials Science and Engineering A, 2010, 527(23): 6140-6152.
[29] Jia L N, Ge J R, Sha J B, et al. Effects of cooling rate and pouring temperature on microstructure and fracture toughness of the induction melted Nb-16Si-22Ti-2Hf-2Cr-2Al alloy[J]. International Journal of Modern Physics B, 2010, 24(15-16): 2946-2951.
[30] Li X J, Zhang H, Sha J B. Effect of vacuum induction melting technology on mechanical properties of Nb-16Si-22Ti-2Al-2Hf-17Cr alloy[J]. International Journal of Modern Physics B, 2010, 24(15-16): 2940-2945.
[31] Gao M, Jia L N, Tang X X, et al. Interaction mechanism between niobium-silicide-based alloy melt and Y2O3 refractory crucible in vacuum induction melting process[J]. China Foundry, 2011, 8(2): 190-196.
[32] Li Y L, Seiji M, Kenichi O, et al. Ultrahigh-temperature NbSS/Nb5Si3 fully-lamellar microstructure developed by directional solidification in OFZ furnace[J]. Intermetallics, 2011, 19(4): 460-469.
[33] Li Y L, Ma C L, Zhang H, et al. Mechanical properties of directionally solidified Nb-Mo-Si-based alloys with aligned NbSS/Nb5Si3 lamellar structure[J]. Materials Science and Engineering A, 2011, 528(18): 5772-5777.
[34] Ma L M, Tang X X, Wang B, et al. Purification in interaction between yttria mould and Nb-silicide based alloy during directional solidification: a novel effect of yttrium[J]. Scripta Materialia, 2012, 67(3): 233-236.
[35] Ma L M, Yuan S N, Cui R J, et al. Interactions between Nb-silicide based alloys and yttria moulds during directional solidification[J]. International Journal of Refractory Metals and Hard Materials, 2012, 30(1): 96-101.
[36] Liu W, Fu Y M, Sha J B. Microstructure and mechanical properties of Nb-Si alloys fabricated by spark plasma sintering[J]. Progress in Natural Science: Materials International, 2013, 23(1): 55-63.
[37] Liu W, Fu Y, Sha J B. Microstructural evolution and mechanical properties of a multi-component Nb-16Si-22Ti-2Al-2Hf-2Cr alloy prepared by reactive hot press sintering[J]. Metallurgical and Materials Transaction A, 2013, 44(5): 2319-2330.
[38] Yuan S N, Jia L N, Ma L M, et al. The microstructure optimizing of the Nb-14Si-22Ti-4Cr-2Al-2Hf alloy processed by directional solidification[J]. Materials Letters, 2012, 84: 124-127.
[39] Yuan S N, Jia L N, Ma L M, et al. Eutectic formation during directional solidification: impact of the withdrawal rate[J]. Materials Letters, 2013, 92: 317-320.
[40] Yuan S N, Jia L N, Su L F, et al. The microstructure evolution of directionally solidified Nb-22Ti-14Si-4Cr-2Al-2Hf alloy during heat treatment[J]. Intermetallics, 2013, 38: 102-106.
[41] Perepezko J H. The hotter the engine, the better[J]. Science, 2009, 326(5956): 1068-1069.
[42] Subramanian P R, Mendiratta M G, Dimiduk D M, et al. Advanced intermetallic alloys-beyond gamma titanium aluminides[J]. Materials Science and Engineering A, 1997, 239-240: 1-13.
[43] Yao D Z, Cai R, Zhou C G, et al. Experimental study and modeling of high temperature oxidation of Nb-base in situ composites[J]. Corrosion Science, 2009, 51(2): 364-370.
[44] Yao D Z, Zhou C G, Yang J Y, et al. Experimental studies and modeling of the oxidation of multiphase niobium-base alloys[J]. Corrosion Science, 2009, 51(11): 2619-2627.
[45] Mitra R, Rama V V. Effect of minor alloying with Al on oxidation behaviour of MoSi2 at 1 200 ℃[J]. Materials Science and Engineering A, 1999, 260(1): 146-160.
[46] Toshio M, Katsuyuki Y. High temperature oxidation and pesting of Mo(Si,Al)2[J]. Materials Science and Engineering A, 1997, 239-240: 828-841.
[47] Tatsuo T, Kazuhisa S, Hisatoshi H, et al. Influences of Al content and secondary phase of Mo5(Si,Al)3 on the oxidation resistance of Al-rich Mo(Si,Al)2-base composites[J]. Intermetallics, 2003, 11(7): 721-733.
[48] Wang W, Yuan B F, Zhou C G. Formation and oxidation resistance of germanium modified silicide coating on Nb based in-situ composite[J]. Corrosion Science, 2014, 80: 164-168.
[49] Knittel S, Mathieu S, Vilasi M. The oxidation behaviour of uniaxial hot pressed MoSi2 in air from 400 to 1 400 ℃[J]. Intermetallics, 2011, 19(8): 1207-1215.
[50] Ritt P, Sakidja R, Perepezko J H. Mo-Si-B based coating for oxidation protection of SiC-C composites[J]. Surface Coating Technology, 2012, 206 (19): 4166-4172.
[51] Feng T, Li H J, Shi X H, et al. Sealing role of B2O3 in MoSi2-CrSi2-Si/B-modified coating for C/C composites[J]. Corrosion Science, 2012, 60: 4-9.
[52] Lemberg J A, Ritchie R O. Mo-Si-B alloys for ultrahigh-temperature structural applications[J]. Advanced Materials, 2012, 24(26): 3445-3480.
[53] Wu J Y, Wang W, Zhou C G. Microstructure and oxidation resistance of Mo-Si-B coating on Nb based in situ composites[J]. Corrosiion Science, 2014, 87: 421-426.
/
〈 | 〉 |