综述

锂离子电池新型三维纳米结构负极研究进展

  • 邢雅兰 ,
  • 王胜彬 ,
  • 张世超 ,
  • 王文旭
展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
邢雅兰 女,博士研究生。主要研究方向:先进储能材料,三维纳米结构材料。 E-mail:xingyalan@mse.buaa.edu.cn;王胜彬 男,博士研究生。主要研究方向:高性能锂离子电池负极材料的制备及其改性研究。 E-mail:wshengbin@sina.cn;张世超 男,博士,教授,博士生导师。主要研究方向:高性能锂离子二次电池、全固态锂电池、燃料电池、锂硫电池、超级电容器等储能体系以及电池中的电化学问题。 Tel:010-82338148 E-mail:csc@buaa.edu.cn;王文旭 男,博士研究生。主要研究方向:先进储能材料,纳米多孔结构材料。 E-mail:wangwenxu0931@gmial.com

收稿日期: 2014-04-11

  修回日期: 2014-07-07

  网络出版日期: 2014-07-14

基金资助

国家"973"计划(2013CB934001);国家自然科学基金(51274017,51074011);国家"863"计划(2013AA050904)

Research on New Three-dimensional Nanostructured Anode Materials for Lithium-ion Batteries

  • XING Yalan ,
  • WANG Shengbin ,
  • ZHANG Shichao ,
  • WANG Wenxu
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-04-11

  Revised date: 2014-07-07

  Online published: 2014-07-14

Supported by

National Basic Research Program of China (2013CB934001); National Natural Science Foundation of China (51274017, 51074011); National High Technology Research and Development Program of China (2013AA050904)

摘要

高性能锂离子电池在微/小型侦察机和空间飞行器等应用中有重要意义。构建三维纳米结构负极,是提高锂离子电池性能的有效方法。综述了国内外锂离子电池新型三维纳米结构负极材料的发展,将其分为3种类型,分别是三维纳米多孔结构、三维纳米阵列结构和三维纳米网络结构。涉及的材料包括碳类材料、合金类材料与过渡金属氧化物材料。相对于传统二维平面负极,三维纳米结构电极可以减小离子迁移距离、增加电极/电解液界面面积、缓冲活性材料充放电体积变化,从而可以提高材料的储能容量,提高电极的循环稳定性,改善电极的倍率性能。

本文引用格式

邢雅兰 , 王胜彬 , 张世超 , 王文旭 . 锂离子电池新型三维纳米结构负极研究进展[J]. 航空学报, 2014 , 35(10) : 2776 -2783 . DOI: 10.7527/S1000-6893.2014.0144

Abstract

High-performance lithium-ion batteries are important component in micro/small reconnaissance aircraft, space vehicles and other applications. This paper briefly reviews the three-dimensional (3D) nanostructured anode materials for lithium ion batteries. Based on the morphologies of prepared 3D nanostructure, the materials are divided into three categories, i.e., 3D porous nanostructure, 3D array nanostructure and 3D network nanostructure. The involved materials include carbonaceous materials, alloy-based anodes and transition metal oxides anodes. Compared with the traditional planar anode, the prepared 3D nanostructured anodes have advantages in shorter diffusion distance for ions, higher interface area between electrode and electrolyte and better accommodation of volume changes during charge-discharge processes, and thus generate higher capacity, better cycle stability and improved rate capacity.

参考文献

[1] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.
[2] Goodenough J, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
[3] Huang C Y. Review of electronics sicence and technology[J]. Journal of China Acaderny of Elecronics and Information Technology, 2004(5): 1-6. (in Chinese) 黄才勇. 空间电源的研究现状与展望[J]. 电子科学技术评论, 2004 (5): 1-6.
[4] Lee S W, Yabuuchi N, Gallant B M, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes[J]. Nature Nanotechnology, 2010, 5(7): 531-537.
[5] Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24.
[6] Li H, Wang Z X, Chen L Q, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607.
[7] AricòA S, Bruce P, Scrosat B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-377.
[8] Arthur T, Bates D, Cirigliano N, et al. Three-dimensional electrodes and battery architectures[J]. MRS Bulletin, 2011, 36(7): 523-531.
[9] Jiang T, Zhang S C, Qiu X P, et al. Preparation and characterization of tin-based three-dimensional cellular anode for lithium ion battery[J]. Journal of Power Sources, 2007, 166(2): 503-508.
[10] Jiang T, Zhang S C, Qiu X P, et al. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery[J]. Electrochemistry Communications, 2007, 9(5): 930-934.
[11] Du Z J, Zhang S C, Jiang T, et al. Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance[J]. Electrochimica Acta, 2010, 55(10): 3537-3541.
[12] Zhang S C, Xing Y L, Jiang T, et al. A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes[J]. Journal of Power Sources, 2011, 196(16): 6915-6919.
[13] Liu W B, Zhang S C, Li N, et al. A facile one-pot route to fabricate nanoporous copper with controlled hierarchical pore size distributions through chemical dealloying of Al-Cu alloy in an alkaline solution[J]. Microporous and Mesoporous Materials, 2011, 138(1-3): 1-7.
[14] Liu W B, Zhang S C, Li N, et al. A general dealloying strategy to nanoporous intermetallics, nanoporous metals with bimodal, and unimodal pore size distributions[J]. Corrosion Science, 2012, 58: 133-138.
[15] Feng Y F, Zhang S C, Xing Y L, et al. Preparation and characterization of nanoporous Cu6Sn5/Cu composite by chemical dealloying of Al-Cu-Sn ternary alloy[J]. Journal of Materials Science, 2012, 47(16): 5911-5917.
[16] Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries[J]. Advanced Materials, 2005, 15(4): 547-556.
[17] Wang Z Y, Li F, Ergang N S, et al. Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites[J]. Chemistry of Materials, 2006, 18(23): 5543-5553.
[18] Guo Y G, Hu Y S, Sig W, et al. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting network[J]. Advanced Materials, 2007, 19(16): 2087-2091.
[19] Lee H Y, Lee S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2004, 6(5): 465-469.
[20] Li F C, Ruffo R, Chan C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2009, 9(1): 491-495.
[21] Zhang S C, Du Z J, Lin R X, et al. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries[J]. Advanced Materials, 2010, 22(47), 5378-5382.
[22] Du Z J, Zhang S C, Jiang T, et al. Improved electrochemical performance of nanostructured Si-based film modified by chemical etching[J]. Electrochimica Acta, 2012, 74: 222-226.
[23] Du Z J, Zhang S C, Xing Y L, et al. Nanocone-arrays supported tin-based anode materials for lithium-ion battery[J]. Journal of Power Sources, 2011, 196(22): 9780-9785.
[24] Du Z J, Zhang S C. Enhanced electrochemical performance of Sn-Co nanoarchitectured electrode for lithium ion batteries[J]. Journal of Physical Chemistry C, 2011, 115(47): 23603-23609.
[25] Wu W M, Zhang S C, Wang L L, et al. Coaxial SnO2@TiO2 nanotube hybrids: from robust assembly strategies to potential application in Li+ storage[J]. Journal of Materials Chemistry, 2012, 22(22): 11151-11158.
[26] Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nature Materials, 2006, 5(7): 567-573.
[27] Xing Y L, Wang Y J, Zhou C G, et al. Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2561-2567.
[28] Xing Y L, Fang B Z, Bonakdarpour A, et al. Facile fabrication of mesoporous carbon nanofibers with unique hierarchical nanoarchitecture for electrochemical hydrogen storage[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7859-7867.
[29] Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2682-2699.
[30] Du Z J, Zhang S C, Jiang T, et al. Facile synthesis of SnO2 nanocrystals coated conducting polymer nanowires for enhanced lithium storage[J]. Journal of Power Sources, 2012, 219: 199-203.
[31] Du Z J, Zhang S C, Liu Y, et al. Facile fabrication of reticular polypyrrole-silicon core-shell nanofibers for high performance lithium storage[J]. Journal of Materials Chemistry, 2012, 22(23): 11636-11641.
[32] Zhao J F, Zhang S C, Liu W B, et al. Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance[J]. Electrochimica Acta, 2014, 121: 428-433.
[33] Hu Y S, Liu X, Müller J O, et al. Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network[J]. Angewandte Chemie International Edition, 2008, 48(1): 210-214.
[34] Nam K T, Kim D K, Yoo P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes[J]. Science, 2006, 312(5775): 885-888.
[35] Cui L F, Yang Y, Hsu C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Letters, 2009, 9(9): 3370-3374.
文章导航

/