论文

高性能抗氧化SmCo高温永磁材料

  • 安士忠 ,
  • 张天丽 ,
  • 蒋成保
展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
安士忠 男,博士研究生。主要研究方向:永磁材料。 E-mail:anshizhong@sina.com蒋成保 男,博士,教授,博士生导师。 主要研究方向:磁性功能材料。 Tel:010-82338780 E-mail:jiangcb@buaa.edu.cn

收稿日期: 2014-04-25

  修回日期: 2014-07-07

  网络出版日期: 2014-07-12

基金资助

国家自然科学基金(51071010,91016006)

SmCo High Temperature Permanent Magnetic Materials with High Properties and Good Oxidation Resistance

  • AN Shizhong ,
  • ZHANG Tianli ,
  • JIANG Chengbao
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-04-25

  Revised date: 2014-07-07

  Online published: 2014-07-12

Supported by

National Natural Science Foundation of China (51071010, 91016006)

摘要

航空航天及现代工业高技术领域对使用温度达到500 ℃的永磁材料提出了明确需求。SmCo永磁材料因其高的居里温度、强的磁晶各向异性和高的饱和磁化强度成为现有永磁材料中高温永磁材料的首选。然而,商用的2:17型SmCo合金因其高的矫顽力温度系数使其最大工作温度不超过300 ℃。本文重点研究了2:17型SmCo高温永磁材料、1:7型纳米晶SmCo高温永磁材料以及SmCo高温永磁材料的抗氧化行为;研制出了可以在500 ℃及550 ℃应用的2:17型SmCo高温永磁体;获得了具有各向异性的1:7型纳米晶SmCo磁体;1:7型纳米晶SmCo永磁材料在500 ℃具有良好的结构和磁性能时效稳定性;合金化和表面改性显著提高了SmCo磁体的高温抗氧化能力。

本文引用格式

安士忠 , 张天丽 , 蒋成保 . 高性能抗氧化SmCo高温永磁材料[J]. 航空学报, 2014 , 35(10) : 2794 -2801 . DOI: 10.7527/S1000-6893.2014.0143

Abstract

Permanent magnetic materials capable of operating at high temperature up to 500 ℃ are required in aerospace field and modern industry. SmCo alloys are candidates for high temperature permanent magnets because of their high curie temperature, strong magnetocrystalline anisotropy field and high saturation magnetization field. However, the service temperature of commercial 2:17-type SmCo alloys cannot exceed 300 ℃. Our research focuses on 2:17-type SmCo high temperature permanent magnetic materials, 1:7-type nanocrystalline SmCo high temperature permanent magnetic materials and their oxidation protection. 2:17-type SmCo permanent magnets capable of operating at 500 ℃ and 550 ℃ are developed; anisotropy is achieved in the 1:7-type nanocrystalline SmCo alloys, 1:7-type nanocrystalline SmCo alloys show good stability of structure and magnetic properties at 500 ℃; and alloying and surface modification can effectively improve the oxidation resistance of the SmCo magnets.

参考文献

[1] Gutfleisch O, Willard M A, Bruck E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[J]. Advanced Materials, 2011, 23(7): 821-842.
[2] Jiang C B, An S Z. Recent progress in high temperature permanent magnetic materials[J]. Rare Metals, 2013, 32(5): 431-440.
[3] Zhang Z, Song X, Qiao Y, et al. A nanocrystalline Sm-Co compound for high-temperature permanent magnets[J]. Nanoscale, 2013, 5(6): 2279-2284.
[4] Fingers R T, Rubertus C S. Application of high temperature magnetic materials[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3373-3375.
[5] Provenza A J, Montague G T, Jansen M J, et al. High temperature characterization of a radial magnetic bearing for turbomachinery[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 437-444.
[6] Gutfleisch O, Müller K H, Khlopkov K, et al. Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets[J]. Acta Materialia, 2006, 54(4): 997-1008.
[7] Zhang Z, Song X, Xu W. Phase evolution and its effects on the magnetic performance of nanocrystalline SmCo7 alloy[J]. Acta Materialia, 2011, 59(4): 1808-1817.
[8] Wang Q, Jiang C B. Study on SmCo permanent magnets under 350 ℃ moderate temperatures[J]. Acta Metallurgica Sinica, 2011, 47(12): 1605-1610. (in Chinese) 王倩, 蒋成保. 350 ℃中温段SmCo永磁材料的研究[J]. 金属学报, 2011, 47(12): 1605-1610.
[9] Wang G J, Jiang C B. The coercivity of the high temperature magnets Sm(CobalFe0.1Cu0.1Zr0.033)6.9 alloys[J] Acta Physica Sinica, 2012, 61(18): 187503. (in Chinese) 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力[J]. 物理学报, 2012, 61(18): 187503.
[10] Wang G J, Jiang C B. The coercivity and domain structure of Sm(CobalFe0.1CuxZr0.033)6.9 (x=0.07, 0.10, 0.13) high temperature permanent magnets[J]. Journal of Applied Physics, 2012, 112(3): 033909.
[11] Wang G J, Zheng L, Jiang C B. Magnetic domain structure and temperature dependence of coercivity in Sm(CobalFe0.1Cu0.1Zr0.033)z (z=6.8, 7.4) magnets[J]. Journal of Magnetism and Magnetic Materials, 2013, 343: 173-176.
[12] Jiang C B, Venkatesan M, Gallagher K, et al. Magnetic and structural properties of SmCo7-xTix magnets[J]. Journal of Magnetism and Magnetic Materials, 2001, 236: 49-55.
[13] Huang M Q, Wallace W E, McHenry M. Structure and magnetic properties of SmCo7-xZrx (x=0-0.8)[J]. Journal of Applied Physics, 1998, 83(11): 6718-6720.
[14] Luo J, Liang J K, Guo Y Q, et al. Crystal structure and magnetic properties of SmCo7-xHfx compounds[J]. Applied Physics Letters, 2004, 85(22): 5299-5301.
[15] Yao Z, Jiang C B. Structural and magnetic properties of TbCu7-type SmCo7-xNix magnets produced by mechanical milling[J]. IEEE Transactions on Magnetics, 2008, 44(12): 4578-4581.
[16] Yao Z, Li P, Jiang C B. Structural and magnetic properties of SmCo7-xMox alloys[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(3): 203-206.
[17] Yao Z, Jiang C B. Structure and magnetic properties of SmCoxTi0.4-1:7 ribbons[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(6): 1073-1077.
[18] Yao Z, Xu Q, Jiang C B. Structural and magnetic properties of SmCo5.6Ti0.4 alloy[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(10): 1717-1721.
[19] Jiang C B, Yao Z. Structural stability and magnetic properties of the TbCu7-Type SmCox-0.4Ti0.4 alloys[J]. IEEE Transactions on Magnetics, 2010, 46(1): 10-14.
[20] An S Z, Zheng L, Zhang T, et al. Bulk anisotropic nanocrystalline SmCo6.6Ti0.4 permanent magnets[J]. Scripta Materialia, 2013, 68(6): 432-435.
[21] An S Z, Zhang T, Jiang C B. Magnetic texture and coercivity of anisotropic nanocrystalline SmCo6.1Si0.9 magnets[J]. Journal of Applied Physics, 2014, 115(17): 17A701.
[22] An S Z, Zhang T, Jiang C B. Evolution of phase and microstructure in anisotropic nanocrystalline SmCo6.1Si0.9 magnets[J]. Journal of Applied Physics, 2014, 115(4): 043901.
[23] Pragnell W M, Evans H E, Williams A J. The oxidation kinetics of SmCo alloys[J]. Journal of Alloys and Compounds, 2009, 473(1-2): 389-393.
[24] Pragnell W M, Evans H E, Williams A J. Oxidation protection of Sm2Co17-based alloys[J]. Journal of Alloys and Compounds, 2012, 517: 92-97.
[25] Pragnell W M, Williams A J, Evans H E. The oxidation morphology of SmCo alloys[J]. Journal of Alloys and Compounds, 2009, 487(1-2): 69-75.
[26] Pragnell W M, Williams A J, Evans H E. The oxidation of SmCo magnets[J]. Journal of Applied Physics, 2008, 103(7): 07E127.
[27] Liu L L, Jiang C B. The improved oxidation resistance of Si-doped SmCo7 nanocrystalline magnet[J]. Applied Physics Letters, 2011, 98(25): 252504.
[28] Liu L L, Jiang C B. Relation between oxidation microstructure and the maximum energy product loss of a Sm2Co17 magnet oxidized at 500 ℃[J]. Chinese Physics B, 2011, 20(12): 127502.
[29] Liu L, Jin T, Jiang C B. High-temperature oxidation resistance and magnetic properties of Si-doped Sm2Co17-type magnets at 500 ℃[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(14): 2310-2314.
[30] Wang Q, Zheng L, An S Z, et al. Thermal stability of surface modified Sm2Co17-type high temperature magnets[J]. Journal of Magnetism and Magnetic Materials, 2013, 331: 245-249.
文章导航

/