变速转子瞬时不平衡响应的精细算法
收稿日期: 2013-12-13
修回日期: 2014-06-23
网络出版日期: 2014-07-04
基金资助
国家自然科学基金(11272257); 航空科学基金(2013ZB08001); 陕西省自然科学基金(2013KJXX-22)
A Precise Integration Method on Transient Unbalance Response of Varying Velocity Rotor
Received date: 2013-12-13
Revised date: 2014-06-23
Online published: 2014-07-04
Supported by
National Natural Science Foundation of China (11272257); Aeronautical Science Foundation of China (2013ZB08001);Natural Science Foundation of Shaanxi Province (2013KJXX-22)
针对变速转子瞬时不平衡响应计算积分精度不足的问题,基于传递矩阵法建立了考虑反对称陀螺力矩的变速转子瞬时不平衡响应线性运动微分方程,推导了适用于线性非定常系统的精细积分法,并通过仿真计算与Newmark-β法比较了变速转子模型下的积分计算效率和动力响应参数的瞬时不平衡识别精度.结果表明两种算法均具有较高的积分精度和计算效率,但是随着转速的增加,Newmark-β法的误差逐渐增大,而精细算法得到的瞬时不平衡响应信息与理论值保持一致.平衡效果显示了精细积分法能准确识别初始不平衡量,提高平衡精度.此外,通过真实不平衡转子在噪声影响下的试验结果进行了验证,发现升速过程中仿真结果与实际响应结果基本吻合.
岳聪 , 任兴民 , 杨永峰 , 邓旺群 . 变速转子瞬时不平衡响应的精细算法[J]. 航空学报, 2014 , 35(11) : 3046 -3053 . DOI: 10.7527/S1000-6893.2014.0126
In view of the disadvantages of integral precision in dynamic unbalance response of rotors, a linear differential equation with variable coefficient of motion based on transfer matrix method is established, in which the antisymmetric gyroscopic moment and acceleration process are exploited. An efficient algorithm based on precise integration method is formulated to calculate the nonstationary linear system. Integral computation efficiency and instantaneous imbalance identification precision are comparatively validated using the improved precise integration and Newmark-β method. The results show that both algorithms have high integral precision and computational efficiency, but the proposed method is efficient and estimates the response of parameters accurately during the whole accelerating process while the integral error of Newmark-β method is increased at a high rotation speed. The precise algorithm can improve balancing precision by identifying the initial unbalance accurately. In addition, this proposed algorithm is verified with an experimental rotor with both noise and unbalance. The simulation is in a good agreement with the measured values in the running-up procedure.
[1] Nagato K, Ide T, Ohno N, et al. Automatic unbalance correction of rotors by sympathetic phase inversion of ultraviolet-curing resin[J]. Precision Engineering, 2009, 33(3): 243-247.
[2] Mehdi B, Mehdi A, David M, et al. A finite element based algorithm for rubbing induced vibration prediction in rotors[J]. Journal of Sound and Vibration, 2013, 332(21): 5523-5542.
[3] Kim T, Na S. New automatic ball balancer design to re-duce transient-response in rotor system[J]. Mechanical Systems and Signal Processing, 2013, 37(1-2): 265-275.
[4] Bouaziz S, Messaoud N B, Choley J Y, et al. Transient response of a rotor AMBs system connected by a flexible mechanical coupling[J]. Mechatronics, 2013, 23(6): 573-580.
[5] Blake M P, Mitchell W S. Vibration and acoustic measurement handbook[M]. New York: Spartan Books, 1972: 7-16.
[6] Yue C, Ren X M, Deng W Q, et al. Multi-plane and multi-critical transient dynamic balance method based on rising speed response information of flexible rotor system[J]. Journal of Aerospace Power, 2013, 28(11): 2593-2599. (in Chinese) 岳聪, 任兴民, 邓旺群, 等. 基于升速响应信息柔性转子系统的多阶多平面瞬态动平衡方法[J]. 航空动力学报, 2013, 28(11): 2593-2599.
[7] Huang J P, Ren X M, Deng W Q, et al. Two-plane balancing of flexible rotor based on accelerating unbalancing response data[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 400-409. (in Chinese) 黄金平, 任兴民, 邓旺群, 等. 基于不平衡加速响应信息的柔性转子双面平衡[J]. 航空学报, 2010, 31(2): 400-409.
[8] Jaroslav Z, Petr F. A computational investigation on the reducing lateral vibration of rotors with rolling-element bearings passing through critical speeds by means of tuning the stiffness of the system supports[J]. Mechanism and Machine Theory, 2011, 46(5): 707-724.
[9] Caprani C C. A modal precise integration method for the calculation of footbridge vibration response[J]. Computers & Structures, 2013, 28: 116-127.
[10] Li Q H, Chen S S, Kou G X. Transient heat conduction analysis using the MLPG method and modified precise time step integration method[J]. Journal of Computational Physics, 2011, 230(7): 2736-2750.
[11] Liu Q M, Zhang J, Yan L B. A numerical method of calculating first and second derivatives of dynamic response based on Gauss precise time step integration method[J]. European Journal of Mechanics, 2010, 29(3): 370-377.
[12] Gu J L, Ding K Y, Liu Q Z, et al. Rotor dynamic[M]. Beijing: National Defence Industry Press, 1988: 51-58. (in Chinese) 顾家柳, 丁奎元, 刘启洲, 等. 转子动力学[M]. 北京: 北京国防工业出版社, 1988: 51-58.
[13] Zhong W X. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136. (in Chinese) 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136.
[14] Xiang Y, Huang Y Y, Zeng G W. Error analysis and accuracy design for the precise time-integration method[J]. Chinese Journal of Computational Mechanics, 2009, 19(3): 276-280.(in Chinese) 向宇, 黄玉盈, 曾革委. 精细时程积分法的误差分析与精度设计[J]. 计算力学学报, 2009, 19(3): 276-280.
[15] Zhang J F, Deng Z C. Dimensional increment and partitioning precise integration method for structural dynamic equation[J]. Journal of Vibration and Shock, 2008, 27(12): 88-90. (in Chinese) 张继锋, 邓子辰. 结构动力方程的增维分块精细积分法[J]. 振动与冲击, 2008, 27(12): 88-90.
[16] Wensch J, Däne M, Hergert W, et al. The solution of stationary ODE problems in quantum mechanics by Magnus methods with stepsize control[J]. Computer Physics Communications, 2004, 160(2): 129-139.
/
〈 | 〉 |