电子与控制

基于气动模型辅助的四旋翼飞行器室内自主导航方法

  • 吕品 ,
  • 赖际舟 ,
  • 杨天雨 ,
  • 刘建业 ,
  • 朱斌 ,
  • 宋亦凡
展开
  • 1. 南京航空航天大学 导航研究中心, 南京 210016;
    2. 中航工业第一飞机设计研究院, 西安 710000
吕品 男, 博士研究生。主要研究方向: 气动模型辅助导航,惯性导航。Tel: 025-84892304-822 E-mail: lvpin@nuaa.edu.cn;赖际舟 男, 博士, 教授。主要研究方向: 惯性导航,组合导航,多信息融合。Tel: 025-84892304-807 E-mail: laijz@nuaa.edu.cn

收稿日期: 2014-04-09

  修回日期: 2014-05-30

  网络出版日期: 2014-06-06

基金资助

国家自然科学基金 (61174197); 航空科学基金 (2012ZC52045); 江苏省普通高校研究生科研创新计划 (CXLX11_0201); 南航博士学位论文创新与创优基金 (BCXJ11-04)

Autonomous navigation method aided by aerodynamics model for an indoor quadrotor

  • LYU Pin ,
  • LAI Jizhou ,
  • YANG Tianyu ,
  • LIU Jianye ,
  • ZHU Bin ,
  • SONG Yifan
Expand
  • 1. Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. AVIC the First Aircraft Institute, Xi'an 710000, China

Received date: 2014-04-09

  Revised date: 2014-05-30

  Online published: 2014-06-06

Supported by

National Natural Science Foundation of China (61174197); Aeronautical Science Foundation of China (2012ZC52045); Funding of Jiangsu Innovation Program for Graduate Education (CXLX11_0201); Funding for Outstanding Doctoral Dissertation in NUAA (BCXJ11-04)

摘要

惯性/卫星/磁传感器/气压高度计组合导航系统是四旋翼飞行器常用的导航方案。但在室内飞行时,由于卫星导航系统不可用,该导航方案的测速及定位精度难以满足四旋翼飞行器的自主飞行需求,从而制约了其室内自主飞行能力。为解决该问题,在利用四旋翼飞行器气动模型的基础上,提出了惯性/磁传感器/声纳传感器/气动模型组合导航方案。通过分析四旋翼飞行器的气动模型特性,揭示了气动模型辅助自主导航的内在机理;提出了气动模型辅助导航算法,并设计了具体的实施流程。最后,结合OS4型四旋翼飞行器的气动模型特点,搭建了气动模型辅助导航方案的验证平台,对四旋翼飞行器的室内悬停与机动飞行进行了仿真模拟。仿真结果表明,气动模型辅助导航方案可以显著提高室内飞行时的测速与定位精度。该方案无需增加其他传感器,具有自主性强、成本低和零载重的优点,在四旋翼飞行器室内导航中具有较好的应用价值。

本文引用格式

吕品 , 赖际舟 , 杨天雨 , 刘建业 , 朱斌 , 宋亦凡 . 基于气动模型辅助的四旋翼飞行器室内自主导航方法[J]. 航空学报, 2015 , 36(4) : 1275 -1284 . DOI: 10.7527/S1000-6893.2014.0112

Abstract

Inertial/satellite/magnetometer/barometer integrated navigation system is commonly used in navigation schemes of a quadrotor. However, since satellite navigation is unavailable during indoor flight, this navigation scheme cannot satisfy the velocity measurement and positioning accuracy requirements of the quadrotor, so that it will restrict the indoor autonomous flight ability. In order to solve the problem, based on the aerodynamics characteristics of the quadrotor, an inertial/magnetometer/barometer/aerodynamics model integrated navigation scheme is proposed in this paper. The characteristics of a quadrotor's aerodynamics model are analyzed and the basic principle of the aerodynamics aided navigation scheme is discussed. The algorithm of the proposed navigation scheme is proposed and the implementation procedure is designed. Finally, a simulation platform is established based on the aerodynamics model of the OS4 quadrotor. Both the hovering flight and the maneuvering flight of a quadrotor are simulated. The simulation results show that the proposed scheme can significantly improve the position/velocity accuracy. The proposed navigation scheme has the advantages of strong autonomy, low cost and zero loads, which does not need extra sensors. It has good application value for the indoor navigation of the quadrotor.

参考文献

[1] Lim H, Park J, Lee D, et al. Build your own quadrotor: open-source projects on unmanned aerial vehicles[J]. IEEE Robotics & Automation Magazine, 2012, 19(3): 33-45.
[2] Liu J Y, Jia W F, Lai J Z, et al. Multi-information nonlinear fusion technology of micro quadrotor aircraft [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(5): 575-582 (in Chinese). 刘建业, 贾文峰, 赖际舟, 等. 微小型四旋翼飞行器多信息非线性融合导航方法及实现[J]. 南京航空航天大学学报, 2013, 45(5): 575-582.
[3] Mahony R, Kumar V, Corke P. Multirotor aerial vehicles: modeling, estimation and control of quadrotor[J]. IEEE Robotics & Automation Magazine, 2012, 19(3): 20-32.
[4] Bruggermann T S, Greer D G, Walker R A. GPS fault detection with IMU and aircraft dynamics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 305-316.
[5] Koifman M, Bar-Itzhack I Y. Inertial navigation system aided by aircraft dynamics[J]. IEEE Transactions on Control Systems Technology, 1999, 7(4): 487-493.
[6] Tenn H K, Jan S S, Hsiao F B. Pitch and roll attitude estimation of a small-scaled helicopter using single antenna GPS with gyroscopes[J]. GPS Solution, 2009, 13(3): 209-220.
[7] Bristeau P J, Callou F, Vissière D, et al. The navigation and control technology inside the AR. Drone micro UAV[C]// Proceedings of the 18th IFAC World Congress. Laxenburg: IFAC, 2011: 1477-1484.
[8] Phlilipp C, Lorenz G, Gert F , et al. Unified model technique for inertial navigation aided by vehicle dynamics model[J]. Navigation, 2013, 60(3): 179-193.
[9] Bryson M, Sukkarieh S. Vehicle model aided inertial navigation for a UAV using low-cost sensors[C]// Proceedings of the Australasian Conference on Robotics and Automation. Parkville: Australian Robotics & Automation Association, 2006.
[10] Vasconcelos J F, Silvestre C, Oliveira P, et al. Embedded UAV model and laser aiding techniques for inertial navigation systems[J]. Control Engineering Practice, 2010, 18(3): 262-278.
[11] Vissière D, Bristeau P J, Martin A P, et al. Experimental autonomous flight of a small-scaled helicopter using accurate dynamics model and low-cost sensors[C]// Proceedings of the 17th IFAC World Congress. Laxenburg: IFAC, 2008: 14642-14650.
[12] Fairfax L D, Fresconi F E. Cost-efficient state estimation for precision projectiles, AIAA-2011-1222[R]. Reston: AIAA, 2011.
[13] Fresconi F E, Cooper G, Costello M. Practical assessment of real-time impact point estimators for smart weapons[J]. Journal of Aerospace Engineering, 2011, 24(1): 1-11.
[14] Fairfax L D, Fresconi F E. Affordable state estimation using inertial navigation sensor arrays[C]// AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2011.
[15] Fairfax L D, Fresconi F E. Position estimation for projectiles using low-cost sensors and flight dynamics, ARL-TR-5994[R]. Adelphi, Maryland: Army Research Laboratory, 2012.
[16] Koehl A, Rafaralahy H, Boutayeb M, et al. Aerodynamic modelling and experimental identification of a coaxial-rotor UAV[J]. Journal of Intelligent & Robotic Systems, 2012, 68(1): 53-68.
[17] Bouabdallah S. Design and control of quadrotors with application to autonomous flying[D]. Swiss: Federal Institute of Technology in Lausanne, 2007.
[18] Buchholz T T. Construction of a four rotor helicopter control system[D]. Denmark: Technical University of Denmark, 2009.
[19] Liu J Y, Zhu Y H, Lai J Z, et al. Inner attitude integration algorithm based on fault detection for Strapdown inertial attitude and heading reference system[J]. Chinese Journal of Aeronautics, 2010, 23(1): 68-74.
[20] Wang Q, Wu K Y, Zhang T J, et al. Aerodynamic modeling and parameter estimation from QAR data of an airplane approaching a high-altitude airport[J]. Chinese Journal of Aeronautics, 2012, 25(3): 361-371.

文章导航

/