电子与控制

基于模糊自适应卡尔曼滤波的大气数据辅助姿态算法

  • 李文 ,
  • 李清东 ,
  • 李亮 ,
  • 陈建 ,
  • 任章 ,
  • 廉成斌 ,
  • 王浩亮
展开
  • 1. 北京航空航天大学 飞行器控制技术一体化技术国防科技重点实验室, 北京 100191;
    2. 上海机电工程研究所, 上海 201109;
    3. 中国舰船研究院, 北京 100192
李文 女, 硕士研究生。主要研究方向: 飞行器导航、制导及控制, 容错控制。E-mail: lw_arui@163.com;李清东 男, 博士, 讲师。主要研究方向: 飞行器导航、制导及控制, 故障检测与诊断, 容错控制, 人工智能。Tel: 010-82314573 E-mail: muziqingdong@126.com

收稿日期: 2014-04-15

  修回日期: 2014-05-20

  网络出版日期: 2014-06-03

基金资助

国家自然科学基金 (91116002, 91216304, 61333011, 61121003)

Air data assisted attitude algorithm based on fuzzy adaptive Kalman filter

  • LI Wen ,
  • LI Qingdong ,
  • LI Liang ,
  • CHEN Jian ,
  • REN Zhang ,
  • LIAN Chengbin ,
  • WANG Haoliang
Expand
  • 1. Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China;
    2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China;
    3. China Ship Research and Development Academy, Beijing 100192, China

Received date: 2014-04-15

  Revised date: 2014-05-20

  Online published: 2014-06-03

Supported by

National Natural Science Foundation of China (91116002, 91216304, 61333011, 61121003)

摘要

针对中低精度航姿参考系统(AHRS)在机体机动时不能利用加速度计修正水平姿态,以及噪声统计特性随实际工作情况变化的问题,提出了一种基于模糊自适应卡尔曼滤波的大气数据辅助姿态解算的方法。首先,考虑大气数据系统和航姿参考系统的优势,利用真空速、攻角和侧滑角等大气数据信息对非重力加速度进行补偿,以辅助水平姿态解算;其次,基于模糊自适应卡尔曼滤波原理,对观测模型的参数进行估计和修正,以实现水平姿态的最优估计;最后,选取某型飞机的试飞数据进行仿真验证。仿真结果表明,该方法可使飞机的水平姿态估计精度达到1.3°,且在偏差较大时有明显的纠偏作用。因此,相对于无机动加速度补偿和常规卡尔曼滤波来说,该方法能够更好地进行姿态估计,具有一定的实用价值。

本文引用格式

李文 , 李清东 , 李亮 , 陈建 , 任章 , 廉成斌 , 王浩亮 . 基于模糊自适应卡尔曼滤波的大气数据辅助姿态算法[J]. 航空学报, 2015 , 36(4) : 1267 -1274 . DOI: 10.7527/S1000-6893.2014.0105

Abstract

Aimed at solving problems that accelerometers cannot be utilized in maneuvering carriers to modify its horizontal attitude and that noise statistical properties change with the actual working conditions in low accuracy attitude and heading reference system (AHRS), an air data assisted attitude calculating method based on fuzzy adaptive Kalman filter is proposed. Firstly, for assisting horizontal attitude calculation, an attitude algorithm is presented to make use of air data, such as true airspeed, angle of attack and sideslip angle information to compensate maneuvering acceleration, combining the advantages of both air data system and AHRS. Secondly, estimating and modifying parameters of the observer model and system characteristics is processed based on fuzzy adaptive Kalman filter in order to realize optimal estimation of horizontal attitude. Finally, simulation of flight test data from a type aircraft flight is conducted. Simulation results demonstrate that the accuracy of attitude angels reaches 1.3 °, and it plays a significant role in correcting large deviations. Thus, to non-compensated maneuvering acceleration algorithm and conventional Kalman filter, this method is superior in attitude estimation and has practical value.

参考文献

[1] Gao Z Y, Niu X J, Guo M F. Quaternion-based Kalman filter for micro-machined strapdown attitude heading reference system[J]. Chinese Journal of Aeronautics, 2002, 15(3): 171-175.
[2] Fu J G, Wang X T, Ma Y, et al. Study on optimal estimation algorithm for autonomous attitude determination[J]. Acta Aeronoutica et Astronautica Sinica, 2005, 26(5): 594-597 (in Chinese) . 傅建国, 王孝通, 马野, 等. 自主姿态测量最优算法研究[J]. 航空学报, 2005, 26(5): 594-597.
[3] Yuan Y H, Li S H, Nan J. Attitude algorithm design of AHRS based on Kalman filter[J]. Chinese Journal of Sensors and Actuators, 2011, 24(12): 1718-1722 (in Chinese). 苑艳华, 李四海, 南江. 基于卡尔曼滤波器的航姿系统测姿算法研究[J]. 传感技术学报, 2011, 24(12): 1718-1722.
[4] Liu J X. The research of micro inertial attitude heading reference system based on MTi[D]. Harbin: Harbin Engineering University, 2008 (in Chinese) . 刘珺琇. 基于 MTi 微惯性航姿系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[5] Yan L B, Jia W M, Yao M L, et al. Low-cost attitude estimation based on extended Kalman filter for satcom-on-the-move[J]. Electronics Optics & Control, 2013, 20(7): 53-57 (in Chinese). 闫林波, 贾维敏, 姚敏立, 等. 基于扩展卡尔曼滤波的动中通低成本姿态估计[J]. 电光与控制, 2013, 20(7): 53-57.
[6] Wang W, Sui L N. Multi-sensor information fusion for airborne navigation system of fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2009, 17(3): 313-318 (in Chinese). 王巍, 隋丽娜. 光纤陀螺机载导航系统多信息融合[J]. 中国惯性技术学报, 2009, 17(3): 313-318.
[7] Li J, Lu Z D, Chen P, et al. The study of in-flight for INS based on air data[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 1-4 (in Chinese). 黎杰, 陆志东, 陈璞, 等. 大气辅助惯导空中对准研究[J]. 弹箭与制导学报, 2011, 31(4): 1-4.
[8] Li R B, Yu Y J, Liu J Y, et al. Research on SINS /GPS integrated navigation system with air data system[J]. Chinese Journal of Scientific Instrument, 2012, 33(9): 1961-1966 (in Chinese). 李荣冰, 于永军, 刘建业, 等. 大气辅助的SINS/GPS组合导航系统研究 [J]. 仪器仪表学报, 2012, 33(9): 1961-1966.
[9] Zhu S H, Wang F, Guo Z X, et al. A new air data attitude and heading reference system algorithm applied to high-dynamic guidance flight [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 14-16 (in Chinese). 朱少华, 汪芳, 郭志想, 等. 一种适用于高动态制导飞行的大气航姿系统算法[J]. 弹箭与制导学报, 2011, 31(4): 14-16.
[10] Tian Y, Sun J H, Li J H, et al. Algorithm for the adaptive Kalman filter in AHRS[J]. Journal of Xidian University, 2011, 38(6): 103-107 (in Chinese). 田易, 孙金海, 李金海, 等. 航姿参考系统中一种自适应卡尔曼滤波算法[J]. 西安电子科技大学学报, 2011, 38(6): 103-107.
[11] Guo P F, Ren Z, Qiu H T, et al. Maneuvering acceleration assisted extended Kalman filter for attitude and heading reference system[J]. Systems Engineering and Electronics, 2009, 31(3): 625-628 (in Chinese). 郭鹏飞, 任章, 邱海韬, 等. 机动加速度辅助的航姿系统扩展卡尔曼滤波[J]. 系统工程与电子技术, 2009, 31(3): 625-628.
[12] Xin G, Li S H, Yuan Y H. Research on algorithm for strapdown attitude heading reference system based on maneuver detection[J]. Measurement & Control Technology, 2012, 31(5): 37-40 (in Chinese). 辛格, 李四海, 苑艳华. 基于机动检测的捷联航姿算法研究[J]. 测控技术, 2012, 31(5): 37-40.
[13] Zhang J, Wang D B, Sheng H L. Research on quaternion micro strapdown AHRS based on MEMS[J].Servo Control, 2012(3): 70-73 (in Chinese). 张杰, 王道波, 盛汉霖. 基于 MEMS 传感器的四元数微型捷联航姿系统研究[J]. 伺服控制, 2012(3): 70-73.
[14] Han J Q, Yuan L L. The discrete form of tracking-differentiator[J]. Journal of System Science and Mathematical, 1999, 19(3): 268-273 (in Chinese). 韩京清, 袁露林. 跟踪微分器的离散形式[J]. 系统科学与数学, 1999, 19(3): 268-273.
[15] Chen X L, Li P, Song S M. The multi-sensor information fusion based on fuzzy adaptive Kalman filter[J]. Aerospace Control, 2011, 29(1): 19-22 (in Chinese). 陈兴林, 李鹏, 宋申民. 基于模糊自适应卡尔曼滤波算法的多传感器信息融合[J]. 航天控制, 2011, 29(1): 19-22.
[16] Escamilla-Ambrosio P J, Mort N. Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment[C]//Proceedings of the 5th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2002: 1542-1549.
[17] Sasiadek J Z, Wang Q, Zeremba M B. Fuzzy adaptive Kalman filtering for INS/GPS data fusion[C]//Proceedings of the 2000 IEEE International Symposium on Intelligent Control. Piscataway, NJ: IEEE, 2000: 181-186.
[18] Xu T L, You W H, Cui P Y. Research on GPS/INS integrated navigation system based on fuzzy adaptive Kalman filtering[J]. Journal of Astronautics, 2005, 26(5): 571-575 (in Chinese). 徐田来, 游文虎, 崔平远. 基于模糊自适应卡尔曼滤波的 INS/GPS 组合导航系统算法研究[J]. 宇航学报, 2005, 26(5): 571-575.

文章导航

/