流体力学与飞行力学

地面试验模拟高空等离子体流动控制效果

  • 车学科 ,
  • 聂万胜 ,
  • 侯志勇 ,
  • 何浩波 ,
  • 田希晖 ,
  • 田学敏
展开
  • 装备学院 航天装备系, 北京 101416
车学科 男,博士,讲师。主要研究方向:等离子体流动控制技术。Tel:010-66368440 E-mail:chedk@163.com;聂万胜 男,博士,教授,博士生导师。主要研究方向:航空宇航与先进流动控制技术。Tel:010-66364204 E-mail:nws1969@126.com;侯志勇 男,博士,讲师。主要研究方向:等离子体流动控制技术。Tel:010-66365246 E-mail:houzhiyong@163.com;何浩波 男,硕士,讲师。主要研究方向:航空宇航与先进流动控制技术。Tel:010-66364348 E-mail:abhhb@163.com;田希晖 男,博士,副教授,硕士生导师。主要研究方向:航空宇航与先进流动控制技术。Tel:010-66364205 E-mail:tianxihui@163.com;田学敏 男,硕士研究生,讲师。主要研究方向:等离子体流动控制技术。Tel:010-66368440 E-mail:daniellotery@163.com

收稿日期: 2014-03-14

  修回日期: 2014-05-26

  网络出版日期: 2014-05-30

基金资助

国家自然科学基金(11205244)

High altitude plasma flow control simulation through ground experiment

  • CHE Xueke ,
  • NIE Wansheng ,
  • HOU Zhiyong ,
  • HE Haobo ,
  • TIAN Xihui ,
  • TIAN Xuemin
Expand
  • Department of Space Equipment, Equipment Academy, Beijing 101416, China

Received date: 2014-03-14

  Revised date: 2014-05-26

  Online published: 2014-05-30

Supported by

National Natural Science Foundation of China (11205244)

摘要

提出了一种利用地面试验研究不同海拔高度等离子体流动控制性能的方法,该方法基于等离子体诱导射流雷诺相似原则,首先通过测量不同气压下静止空气中等离子体诱导射流的雷诺数,确定地面模拟等离子体激励器的结构和激励参数,然后将该激励器用于风洞试验,最后根据风洞试验结果评估等离子体在不同海拔高度处的流动控制效果。利用该方法研究了等离子体控制临近空间S1223翼型,结果表明相同工作条件下等离子体诱导射流最大速度随着海拔高度增加而增大,但射流雷诺数逐渐降低;高海拔低气压下除了切向壁面射流,等离子体在激励器上方诱导出一个高速向下的法向射流;采用雷诺相似等离子体激励器控制雷诺数为7.1×104的S1223翼型表面流动,攻角为6°~20°时升力系数增大27%~43%,表明采用等离子体流动控制技术后临近空间飞行器的升力特性可得到显著提升。

本文引用格式

车学科 , 聂万胜 , 侯志勇 , 何浩波 , 田希晖 , 田学敏 . 地面试验模拟高空等离子体流动控制效果[J]. 航空学报, 2015 , 36(2) : 441 -448 . DOI: 10.7527/S1000-6893.2014.0107

Abstract

The method which is used to study the plasma flow control performance at different altitudes by ground experiments is presented. The induced jet Reynolds number is measured in static air under different pressures at first, then the geometrical and electrical parameters of ground plasma model actuator will be obtained according to Reynolds similarity of the plasma induced jet. Secondly, the model actuator is applied to the wind tunnel experiments and the results can be used to estimate the plasma flow control performance at different altitudes. That plasma modifies the flowfield of S1223 airfoil is studied by this method. It is found that when the altitude increases, the maximal velocity of plasma induced jet increases but Reynolds number decreases under the same working conditions. The plasma can induce one high-speed normal jet towards wall above the actuator except the wall tangential jet under low pressure. The S1223 airfoil with Reynolds number 7.1×104 controlled by the Reynolds similarity plasma model actuator is studied. It is found that when the angle of attack is 6°-20°, the lift coefficient increases about 27% to 43% which indicates that the lift performance of near space vehicle can be improved markedly by plasma.

参考文献

[1] Moreau E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605-636.

[2] Wang J J, Choi K S, Feng L H, et al. Recent development in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78.

[3] Nie W S, Cheng Y F, Che X K. A review on dielectric barrier discharge plasma flow control[J].Advances in Mechanics, 2012, 42(6): 722-734 (in Chinese). 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6): 722-734.

[4] Gregory J W, Enloe C L, Font G I, et al. Force production mechanisms of a dielectric-barrier discharge plasma actuator, AIAA-2007-0185[R]. Reston: AIAA, 2007.

[5] Benard N, Balcon N, Moreau E. Electric wind produced by a surface dielectric barrier discharge operating in air at different pressures: aeronautical control insights[J]. Journal of Physics D: Applied of Physics, 2008, 41(4): 042002.

[6] Benard N, Moreau E. Effects of altitude on the electromechanical characteristics of dielectric barrier discharge plasma actuators, AIAA-2010-4633[R]. Reston: AIAA, 2010.

[7] Bottelberghe K, Mahmud Z. Low-pressure effects on a single DBD plasma actuator, AIAA-2010-0550[R]. Reston: AIAA, 2010.

[8] Versailles P, Gosselin V G, Vo H D. Impact of pressure and temperature on the performance of plasma actuators [J]. AIAA Journal, 2010, 48(4): 859-863.

[9] Abe T, Takizawa Y, Sato S, et al. Experimental study for momentum transfer in a dielectric barrier discharge plasma actuator[J]. AIAA Journal, 2008, 46(9): 2248-2256.

[10] Valerioti J A, Corke T C. Pressure dependence of dielectric barrier discharge plasma flow actuators[J]. AIAA Journal, 2012, 50(7): 1490-1502.

[11] Wu Y, Li Y H, Jia M, et al. Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics[J]. Applied Physics Letters, 2008, 93(3): 031503.

[12] Rethmel C, Little J, Takashima K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators, AIAA-2011-0487[R]. Reston: AIAA, 2011.

[13] Taleghani A S, Shadaram A, Mirzaei M. Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil[J]. IEEE Transactions on Plasma Science, 2012, 40(5): 1434-1440.

[14] Chen Q, Meng X S, Wang Y S, et al. Comparison of pressures driven by nanosencond pulse to AC results, AIAA-2014-0094[R]. Reston: AIAA, 2014.

[15] Wang W B, Zhang R P, Huang Z B, et al. Test research of two-element airfoil lift enhancement by plasma actuator [J]. Acta Aerodynamica Sinica, 2013, 31(1): 64-68 (in Chinese). 王万波, 章荣平, 黄宗波, 等. 等离子体激励用于两段翼型增升的试验研究[J]. 空气动力学学报, 2013, 31(1): 64-68.

[16] Du H, Shi Z W, Ni F Y, et al. Aerodynamic moment control of flying wing vehicle using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2038-2046 (in Chinese). 杜海, 史志伟, 倪芳原, 等. 基于等离子体激励的飞翼布局飞行器气动力矩控制[J]. 航空学报, 2013, 34(9): 2038-2046.

[17] Liang H, Li Y H, Song H M, et al. Experimental investigation on airfoil stall separation suppression by multiphase plasma aerodynamic actuation[J]. Journal of Aerospace Power, 2011, 26(4): 867-873 (in Chinese). 梁华, 李应红, 宋慧敏, 等. 多相等离子体气动激励抑制翼型失速分离的试验[J].航空动力学报, 2011, 26(4): 867-873.

[18] Zhang P F, Wang J J, Shi W Y, et al. Experimental study on the separation control by plasma actuator in subsonic flow[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 35-39 (in Chinese). 张攀峰, 王晋军, 施威毅, 等. 等离子体激励低速分离流动控制实验研究[J]. 实验流体力学, 2007, 21(2): 35-39.

[19] Ren S G. Experimental aerodynamics[M]. Beijing: China Astronautic Publishing House, 1996 (in Chinese). 任思根. 实验空气动力学[M]. 北京: 中国宇航出版社, 1996.

[20] Murphy J P, Kriegseis J, Lavoie P. Scaling of maximum velocity, body force, and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry[J]. Journal of Applied Physics, 2013, 113(24): 243301.

[21] Pavón S, Ott P, Leyland P, et al. Effects of a surface dielectric barrier discharge on transonic flows around an airfoil, AIAA-2009-0649[R]. Reston: AIAA, 2009.

[22] Benard N, Balcon N, Moreau E. Electric wind produced by a surface dielectric barrier discharge operating over a wide range of relative humidity, AIAA-2009-0488[R]. Reston: AIAA, 2009.

[23] Benard N, Balcon N, Moreau E. Electric wind produced by a single dielectric barrier discharge actuator operating in atmospheric flight conditions-pressure outcome, AIAA-2008-3792[R]. Reston: AIAA, 2008.

[24] Font G I, Enloe C L, Newcomb J Y, et al. Effects of oxygen content on dielectric barrier discharge plasma actuator behavior[J]. AIAA Journal, 2011, 49(7): 1366-1373.

[25] Shao T, Zhang D D, Yu Y, et al. A compact repetitive unipolar nanosecond-pulse generator for dielectric barrier discharge application[J]. IEEE Transactions on Plasma Science, 2010, 38(7): 1651-1655.

文章导航

/