基于多滑模调节器切换的机动飞行边界保护控制
收稿日期: 2014-02-20
修回日期: 2014-04-21
网络出版日期: 2014-05-13
基金资助
国家自然科学基金(61374212,61174102);江苏省自然科学基金(SBK20130033);高等学校博士学科点专项科研基金(20133218110013)
Envelope Protection Control for Maneuver Flight Based on Multi-regulator Sliding Mode Control Switch Approach
Received date: 2014-02-20
Revised date: 2014-04-21
Online published: 2014-05-13
Supported by
National Natural Science Foundation of China (61374212, 61174102); Natural Science Foundation of Jiangsu Province (SBK20130033); Specialized Research Fund for the Doctoral Program of Higher Education of China (20133218110013)
针对飞行器机动过程中关键飞行参数容易超出其边界的问题,研究了基于多滑模调节器的边界保护控制器.利用滑模方法设计多个边界调节器并采用最大/最小逻辑在各调节器之间进行切换.首先对边界约束集的正不变性以及系统最终的收敛性进行了严格的证明,然后通过将系统化为可控标准型,提出了确定系统最终收敛点的直观方法;其次通过引入分段线性滑模和分段二次Lyapunov函数对闭环系统的稳定性进行了分析;然后在此基础上给出了机动边界保护系统控制器的设计步骤;最后通过仿真表明,所设计的控制器能够保证在机动过程中关键飞行参数不越界的同时对输入指令进行很好的跟踪.
叶辉 , 陈谋 , 吴庆宪 . 基于多滑模调节器切换的机动飞行边界保护控制[J]. 航空学报, 2014 , 35(12) : 3358 -3370 . DOI: 10.7527/S1000-6893.2014.0067
In the maneuver flight of the aircraft, some key flight parameters may exceed their limitations easily. To solve this problem, a flight envelope protection controller is designed based on multi-regulator sliding mode control switch strategy. The controller contains a series of sliding mode regulators which are switched by a max/min selector. Firstly, positive invariance of the constraint set and convergence of the system are proved rigorously. Meanwhile, an intuitional method is proposed to determine the point of convergence by transforming the system to the controllable canonical form. Secondly, the stability of the closed loop system is analyzed by introducing the method of piecewise linear sliding mode and piecewise quadratic Lyapunov function. Then, the design procedures of the maneuvering envelope protection controller are presented. Finally simulation results show that the developed controller can ensure that key flight parameters do not exceed their limitations and the controlled output can track its commands well during maneuver flight of the aircraft.
[1] Zhang W G, Li A J, Li G W, et al. Modern flight control system design[M]. Xi'an: Northwestern Polytechnical University Press, 2009: 246-255. (in Chinese) 章卫国, 李爱军, 李广文, 等. 现代飞行控制系统设计[M]. 西安: 西北工业大学出版社, 2009: 246-255.
[2] Wang H Y, Xue F, Li Z S, et al. Method study of AOA limiter for large transport category airplanes[J]. Journal of System Simulation, 2009, 20(Suppl): 257-259. (in Chinese) 王华友, 薛峰, 李振水, 等. 大型飞机迎角限制方法研究[J]. 系统仿真学报, 2009, 20(增刊): 257-259.
[3] Zhang X P, Chen Z J. A design method on limiter for angle of attack and normal acceleration[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(1): 87-91. (in Chinese) 张喜平, 陈宗基. 迎角过载边界限制器的设计方法[J]. 航空学报, 1995, 16(1): 87-91.
[4] Falkena W, Borst C, Chu Q P, et al. Investigation of practical flight envelope protection systems for small aircraft[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 976-988.
[5] Yavrucuk I, Prasad J V R, Unnikrishnan S. Envelope protection for autonomous unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 248-261.
[6] Yavrucuk I, Prasad J V R. Online dynamic trim and control limit estimation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5): 1647-1656.
[7] van Oort E R, Chu Q P, Mulder J A, et al. Robust model predictive control of a feedback linearized nonlinear F-16/MATV aircraft model, AIAA-2006-6318[R]. Reston: AIAA, 2006.
[8] Krings M, Thielecke F. An integrated approach to predictive flight guidance and envelope protection, AIAA-2012-4712[R]. Reston: AIAA, 2012.
[9] Glattfelder A H, Schaufelberger W. Control systems with input and output constraints[M]. London: Springer, 2003: 91-158.
[10] Richter H. Control design with output constraints: multi-regulator sliding mode approach with override logic[C]//Proceedings of American Control Conference. Piscataway. NJ: IEEE, 2012: 6166-6171.
[11] Blanchini F, Miani S. Set-theoretic mehtods in control[M]. New York: Springer, 2008: 86-94.
[12] Richter H. A multi-regulator sliding mode control strategy for output-constrained systems[J]. Automatica, 2011, 47(10): 2251-2259.
[13] Gao W B. Variable structure control theory and design method[M]. Beijing: Science Press, 1996: 6-10. (in Chinese) 高为炳. 变结构控制的理论及设计方法[M]. 北京: 科学出版社, 1996: 6-10.
[14] Litt J S, Frederick D K, Guo T H. The case for intelligent propulsion control for fast engine response, AIAA-2009-1876[R]. Reston: AIAA, 2009.
[15] Branicky M S. Analyzing continuous switching systems: theory and examples[C]//Proceedings of American Control Conference. Piscataway NJ: IEEE, 1994: 3110-3114.
[16] Foss A M. Criterion to assess stability of a ‘lowest wins’ control strategy[J]. IEE Proceedings D: Control Theory and Application, 1981, 128(1): 1-8.
[17] Johansson M. Piecewise linear control systems[M]. Heidelberg: Springer, 2002: 55-61.
[18] Reigelsperger W C, Banda S S, Lemaster D P. Application of multivariable control theory to aircraft control laws, WL-TR-96-3099[R]. Wright-Patterson Air Force Base: Flight Dynamics Directorate, 1996.
/
〈 | 〉 |