综述

民机机体噪声及其降噪研究

  • 朱自强 ,
  • 兰世隆
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191
朱自强 男,教授,博士生导师。主要研究方向:计算流体力学,飞行器气动设计。Tel:010-82314186 E-mail:zhuzq@buaa.edu.cn;兰世隆 男,博士,副教授。主要研究方向:计算流体力学,气动噪声。Tel:010-82317506 E-mail:lanshilong@126.com

收稿日期: 2014-02-28

  修回日期: 2014-05-07

  网络出版日期: 2014-05-07

Study of airframe noise and its reduction for commercial aircraft

  • ZHU Ziqiang ,
  • LAN Shilong
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-02-28

  Revised date: 2014-05-07

  Online published: 2014-05-07

摘要

分析了机体噪声源的主要机理及其基本性质。机体噪声由绕起落架装置和高升力系统的流动引起的压强脉动产生。起落架和前缘缝翼产生的基本上是宽频噪声,它们和襟翼的宽频噪声的强度分别随速度的6次方、4.5次方和5次方变化。实际飞行中还应注意存在的"寄生"噪声。此外,较为详尽地讨论了包括QTD II、RAIN、SILENCE(R)和TIMPAN等降噪措施在内的研究项目及其可获得的效果,还讨论了噪声的计算方法,介绍了国外航空界提出的未来民机需降噪的目标,表明民机设计面临降噪的巨大挑战。

本文引用格式

朱自强 , 兰世隆 . 民机机体噪声及其降噪研究[J]. 航空学报, 2015 , 36(2) : 406 -421 . DOI: 10.7527/S1000-6893.2014.0008

Abstract

In the present paper the main mechanisms and basic characteristics of the airframe noise are analyzed. The airframe noise is produced by the pressure fluctuation of the flows around the landing gears and high lift systems. Aerodynamic noise from landing gears and leading edge slots are essential broadband noise, their strengths and the strength of broadband noise of flaps are varied with 6th, 4.5th and 5th power of flow velocity respectively. The existence of parasitic noise in flight must be concerned too. The noise reducing projects of QTD Ⅱ, RAIN, SILENCE(R) and TIMPAN are discussed and their results are presented in the paper. The computational methods are briefly introduced. The goals of noise reduction for future commercial aircraft proposed by foreign countries are given, which indicates a huge challenge to the future commercial aircraft design.

参考文献

[1] Green J E. Air travel-greener by design mitigating the environmental impact of aviation: opportunities and priorities[J]. The Aeronautical Journal, 2005, 109(1099): 495-510.

[2] Green J E. Civil aviation and the environment—the next frontier for the aerodynamicist[J]. The Aeronautical Journal, 2006, 110(1110): 469-486.

[3] Epstein A H. Aeropropulsion for commercial aviation in the 21st century and research directions needed, AIAA-2013-0001[R]. Reston: AIAA, 2013.

[4] Qiao W Y. Aeroacoustics of aeroengine[M]. Beijing: Beihang University Press, 2010 (in Chinese). 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010.

[5] Josling R D, Thomas R H, Choudhari M M. Synergism of flow and noise control technologies[J]. Progress in Aerospace Sciences, 2005, 41(5): 363-417.

[6] Dowling A, Greiter E D. The silent aircraft initiative—overview, AIAA-2007-0452[R]. Reston: AIAA, 2007.

[7] Zhu Z Q, Wang X L, Wu Z C, et al. Discussion of design methods for silent and fuel efficient medium range civil transport[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 562-572 (in Chinese). 朱自强, 王晓璐, 吴宗成, 等. 高经济性静音中航程民用机设计方法讨论[J]. 航空学报, 2008, 29(3): 562-572.

[8] Dobrzynski W. Almost 40 years of airframe noise research: what did we achieve?[J]. Journal of Aircraft, 2010, 47(2): 353-367.

[9] Dobrzynski W, Buchholz H. Full-scale noise testing on airbus landing gears in the German-Dutch wind tunnel, AIAA-1997-1597[R]. Reston: AIAA, 1997.

[10] Stoker R W, Guo Y, Streett C, et al. Airframe noise source locations of a 777 aircraft in flight and comparisons with past model scale tests, AIAA-2003-3232[R]. Reston: AIAA, 2003.

[11] Long S L, Nie H, Xue C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1002-1013 (in Chinese). 龙双丽, 聂宏, 薛彩军, 等.飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6): 1002-1013.

[12] Ravetta P A, Burdisso R A, Ng W F. Wind tunnel aeroacoustic measurements of a 26% scale 777 main landing gear model, AIAA-2004-2885[R]. Reston: AIAA, 2004.

[13] Jaeger S M, Burnside N J, Soderman P T, et al. Microphone array assessment of an isolated 26%-scale, high-fidelity landing gear, AIAA-2002-2410[R]. Reston: AIAA, 2002.

[14] Horne W C, James K D, Arledge T K, et al. Measurements of 26% scale 777 airframe noise in the NASA Ames 40 by 80 Foot Wind tunnel, AIAA-2005-2810[R]. Reston: AIAA, 2005.

[15] Smith M G, Fenech B, Chow L C, et al. Control of noise sources on aircraft landing gear bogies, AIAA-2006-2626[R]. Reston: AIAA, 2006.

[16] Hayes J A, Horne W C, Soderman P T, et al. Airframe noise characteristics of a 4.7% scale DC-10 model, AIAA-1997-1594[R]. Reston: AIAA, 1997.

[17] Dobrzynski W, Nagakura K, Gehlhar B, et al. Airframe noise studies on wings with deployed high-lift devices, AIAA-1998-2337[R]. Reston: AIAA, 1998.

[18] Herkes W H, Stoker R W. Wind tunnel measurements of the airframe noise of a high-speed civil transport, AIAA-1998-0472[R]. Reston: AIAA, 1998.

[19] Davy R, Remy H. Airframe noise characteristics of a 1/11 scale airbus model,AIAA-1998-2335[R]. Reston: AIAA, 1998.

[20] Dobrzynski W, Gehlhar B, Buchholz H. Model- and full scale high-lift wing wind tunnel experiments dedicated to airframe noise reduction[J]. Aerospace Science Technology, 2001, 5(1): 27-33.

[21] Choudhari M M, Khorrami M. Slat cove unsteadiness: effect of 3D flow structures, AIAA-2006-0211[R]. Reston: AIAA, 2006.

[22] Dobrzynski W, Pott-Pollenske M. Slat noise source studies for farfield noise prediction, AIAA-2001-2158[R]. Reston: AIAA, 2001.

[23] Streett C L. Numerical simulation of fluctuations leading to noise in a flap-edge flowfield, AIAA-1998-0628[R]. Reston: AIAA, 1998.

[24] Radezrsky R H, Singer B A, Khorrami M R. Detailed measurements of a flap side-edge flow field, AIAA-1998-0700 [R]. Reston: AIAA, 1998.

[25] Brooks T F, Humphreys W M, Jr. Flap edge aeroacoustic measurements and predictions, AIAA-2000-1975[R]. Reston: AIAA, 2000.

[26] Li Y, Wang X N, Zhang D J. Control strategies for aircraft airframe nose reduction[J]. Chinese Journal of Aeronautics, 2013, 26(2): 249-260.

[27] Zhu Z Q, Wu Z C, Chen Y C, et al. Advanced technology in aerodynamic design of commercial aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2013 (in Chinese). 朱自强, 吴宗成, 陈迎春, 等. 民机空气动力设计先进技术[M]. 上海: 上海交通大学出版社, 2013.

[28] Ravetta P, Burdisso R, Ng W, et al. Screening of potential noise control devices at virginia tech for QTD II flight test, AIAA-2007-3455[R]. Reston: AIAA, 2007.

[29] Ravetta P, Burdisso R, Ng W. Noise control of landing gears using elastic membrane-based fairings, AIAA-2007-3466[R]. Reston: AIAA, 2007.

[30] Abeysinghe A, Whitmire J, Nesthus D. QTD II main landing gear noise reduction fairing design and analysis, AIAA-2007-3456[R]. Reston: AIAA, 2007.

[31] Elkoby R, Brusniak L, Stoker R, et al. Airframe noise test results from the QTD II flight test program, AIAA-2007-3457[R]. Reston: AIAA, 2007.

[32] Dobrzynski W, Chow L C, Guion P, et al. European study on landing gear airframe noise sources, AIAA-2000-1971[R]. Reston: AIAA, 2000.

[33] Chow L C, Mau K, Remy H. Landing gear and high lift devices airframe noise research, AIAA-2002-2408[R]. Reston: AIAA, 2002.

[34] Piet J F, Davy R, Elias G, et al. Flight test investigation of add-on treatments to reduce aircraft airframe noise, AIAA-2005-3007[R]. Reston: AIAA, 2005.

[35] Davy R, Moens P, Remy H. Aeroacoustic behaviour of a 1∶11 scale airbus model in the open anechoic wind tunnel CEPRA 19, AIAA-2002-2412[R]. Reston: AIAA, 2002.

[36] Piet J F, Michel U, Bohning P. Localization of the acoustic sources of the A340 with a large phased microphone array during flight tests, AIAA-2002-2506[R]. Reston: AIAA, 2002.

[37] Piet J F, Chow L C, Laporte F, et al. Flight test investigation of high-lift devices and landing gear modifications to achieve airframe noise reduction[C]//Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, 2004.

[38] Dobrzynski W, Chow L C, Smith M, et al. Experimental assessment of low noise landing gear component design, AIAA-2009-3276[R]. Reston: AIAA, 2009.

[39] Oerlemans S, Sandu C, Malin N, et al. Reduction of landing gear noise using meshes, AIAA-2010-3972[R]. Reston: AIAA, 2010.

[40] Khorrami M R, Lockard D P. Effects of geometrical details on slat noise generation and propagation, AIAA-2006-2664[R]. Reston: AIAA, 2006.

[41] Kolb A, Faulhaber R, Drobietz R,et al. Aeroacoustic wind tunnel study on a two dimensional high lift configuration, AIAA-2007-3447[R]. Reston: AIAA, 2007.

[42] Imamura T, Ura H, Yokokawa Y, et al. Designing of slat cove filler as a noise reduction device for leading-edge slat, AIAA-2007-3473[R]. Reston: AIAA, 2007.

[43] Pott-Pollenske M, Wild J, Nagel B, et al. Multidisciplinary design approach toward low noise high-lift devices [C]//Conference Proceedings of the 8th ONERA-DLR Aerospace Symposium (ODAS), 2007.

[44] Shmilovich A, Yadlin Y, Pitera D M. Wing leading edge concepts for noise reduction[C]//27th International Congress of the Aeronautical Sciences, 2010.

[45] Crighton D G. Airframe noise in aeroacoustics of flight vehicles[M]. Washington, D.C.: Acoustical Society of America, 1995.

[46] Lockard D P, Lilley G M. The airframe noise reduction challenge, NASA-TM-2004-21303[R]. Washington, D.C.: NASA, 2004.

[47] Singer B A, Guo Y. Development of computational aeroacoustics tools for airframe noise calculations[J]. International Journal of Computational Fluid Dynamic, 2004, 18(6): 455-469.

[48] Wang M, Freund J B, Lele S K. Computational prediction of flow generated sound[J]. Annual Review of Fluid Mechanics, 2003, 38: 483-512.

[49] Tam C K W. Computational aeroacoustics: an overview RTOAVT symposium on ageing mechanisms and control, part A, developments in computational aero- and hydro-acoustics[R]. 2001.

[50] Farassat F, Casper J H. Towards an airframe noise prediction methodology, survey of current approaches, AIAA-2006-0210[R]. Reston: AIAA, 2006.

[51] Dahl M. A process for assessing NASA's capability in aircraft noise prediction technology, AIAA-2008-2813[R]. Reston: AIAA, 2008.

[52] Zorumski W E. Aircraft noise prediction program theoretical manual, Part I and II, NASA TM-83199[R]. Washington, D.C.: NASA, 1982.

[53] Smith M G, Chow L C. Prediction method for aerodynamic noise from aircraft landing gear, AIAA-1998-2228[R]. Reston: AIAA, 1998.

[54] Guo Y P. A semi-empirical model for aircraft landing gear noise prediction, AIAA-2006-2627[R]. Reston: AIAA, 2006.

[55] Guo Y P, Yamamoto K J, Stoker R W. Component-based empirical model for high-lift system noise prediction[J]. Journal of Aircraft, 2003, 40(5): 914-922.

[56] Lighthill M J. On sound generated aerodynamically. I. general theory[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1952, 211(1107): 564-587.

[57] Ffowcs Williams J E, Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1969, 264(1151): 321-342.

[58] Yu L, Song W P, Han Z H, et al. Aeroacoustic noise prediction using hybrid RANS/LES method and FW-H equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1795-1805 (in Chinese). 余雷, 宋文萍, 韩忠华, 等. 基于混合RANS/LES方法与FW-H方程的气动声学计算研究[J]. 航空学报, 2013, 34(8): 1795-1805.

[59] Wang F, Liu Q H, Cai J S. An unified computational aeroacoustic integral method of noise radiation and scattering with noncompact bodies[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2482-2491 (in Chinese). 王芳, 刘秋洪, 蔡晋生. 非紧致结构气动噪声辐射散射统一积分计算方法[J]. 航空学报, 2013, 34(11): 2482-2491.

[60] Jefferies R. CLEEN program technologies developments[C]//NASA ERA N+2 Advanced Vehicle Concepts of Quck-starts NRA Pre-proposal Meeting, 2010.

[61] Wisley C, Stoker R. Continuous lower energy, emissions and noise(CLEEN) technologies development[R]. 2010.

[62] Collier F, Thomas R, Burley C, et al. Enviromentally responsible aviation-real solutions for environmental challenge facing aviation[C]//27th Congress of the International Council of the Aeronautical Sciences, 2010.

[63] Reiman C A, Tinetti A F, Dunn M H. Noise scattering by the blended wing body airplane: measurements and prediction, AIAA-2006-3144[R]. Reston: AIAA, 2006.

[64] Czech M J, Thomas R H, Elkoby R. Propulsion airframe aero-acoustic integration effects for a hybrid wing body aircraft configuration, AIAA-2010-3912[R]. Reston: AIAA, 2010.

[65] Thomas R H, Burley C L, Olson E D. Hybrid wing body aircraft system noise assessment with propulsion airframe aero-acoustic experiments, AIAA-2010-3913[R]. Reston: AIAA, 2010.

[66] Bradley M K, Droney C K. Subsonic ultra green aircraft research: Phase I: final peport, NASA/CR-2011-216847[R]. Washington, D.C.: NASA, 2011.

[67] Bradley M K, Droney C K. Subsonic ultra green aircraft research, Phase II: N+4 advanced concept development, NASA/CR-2012-217556[R]. Washington, D.C.: NASA, 2012.

[68] Li G Y, Zhang J P. Dual expectations on fight[J]. International Aviation, 2011(2): 47-50 (in Chinese). 李广义, 张晋平. 人类对飞行的双重追求[J]. 国际航空, 2011(2): 47-50.

[69] Xu D K. "Clean Sky II" project in Europe aviation industry[J]. International Aviation, 2013(1): 60-62 (in Chinese). 徐德康. 欧洲航空工业制定"清洁天空II"计划[J]. 国际航空, 2013(1): 60-62.

[70] Chen D B, Zhou J J, Hao X, et al. Review of aeroacoustic measurement techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1): 106-112 (in Chinese). 陈大斌, 周家检, 郝璇, 等. 气动噪声风洞试验技术发展概述[J]. 实验流体力学, 2013, 27(1): 106-112.

文章导航

/