流体力学与飞行力学

蜂蝇快速起飞过程的实验观测及力学分析

  • 陈茂伟 ,
  • 孙茂
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191
陈茂伟 男, 博士研究生.主要研究方向: 仿生流体力学. Tel: 010-82339773 E-mail: aspenchen@buaa.edu.cn

收稿日期: 2014-01-07

  修回日期: 2014-04-14

  网络出版日期: 2014-05-04

基金资助

国家自然科学基金(11232002);"111"计划(B07009)

Experimental Measurement and Force Analysis of a Fast Takeoff in Dronefly

  • CHEN Maowei ,
  • SUN Mao
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-01-07

  Revised date: 2014-04-14

  Online published: 2014-05-04

Supported by

National Natural Science Foundation of China (11232002); the "111" Project (B07009)

摘要

通过实验观测蜂蝇的快速起飞过程,并计算分析其中的力学过程.利用三维高速图像测量技术观测了整个过程中身体及翅膀的运动学参数,并且扫描记录了昆虫的形态学数据.采用所测得数据处理得到起飞过程中的惯性力和力矩,利用计算流体力学(CFD)方法计算翅膀拍动产生的气动力,由力学平衡得到腿部作用力.在快速起飞时经过2次完整拍动其拍动幅角增大到最大值,经过4次完整拍动之后拍动频率变为恒定,并且昆虫完全升入空中.离地之前主要由腿部作用力支撑体重及产生向上的加速度,同时在水平和俯仰转动方向消除气动力产生的不利影响,直到离地时腿部作用力变为零.表明蜂蝇具备通过增加腿部用力来达到快速起飞从而躲避天敌的能力,相比自主起飞缩短了起飞时间,也为人造微小型飞行器(MAV)的不同起飞模式的设计提供了思路.

本文引用格式

陈茂伟 , 孙茂 . 蜂蝇快速起飞过程的实验观测及力学分析[J]. 航空学报, 2014 , 35(12) : 3222 -3231 . DOI: 10.7527/S1000-6893.2014.0056

Abstract

An experimental measurement of a fast takeoff in dronefly is projected and the force analysis is presented here. Wing and body kinematics of the insect during takeoff are measured using high-speed video techniques and the morphological data are recorded. Based on the measured data, the inertia force acting on the insect is computed and the aerodynamic force of the wings is calculated by the method of computational fluid dynamics (CFD). The leg force is determined according to force balance. In the takeoff, the stroke amplitude reaches a maximum value after two completed wingbeats, and after four wingbeats the wingbeat frequency stays constant and the insect is airborne. The leg force plays a primary role in the body raise movement and decreases the influence of aerodynamic force in horizontal and pitch motion, and decreases to zero when the insect is airborne. These indicate that droneflies get the ability to take off quickly to avoid predators using their legs, and the takeoff duration decreases compared with the voluntary takeoff. It is also an inspiration for the takeoff mode of man-made micro air vehicle (MAV).

参考文献

[1] Pond C M. The initiation of flight in unrestrained locusts, schistocerca gregaria[J]. Journal of Comparative Physiology, 1972, 80(2): 163-178.

[2] Govind C K, Dandy J W T. Non-fibrillar muscles and the start and cessation of flight in the milkweed bug, oncopeltus[J]. Journal of Comparative Physiology, 1972, 77(4): 398-417.

[3] Trimachi J R, Schneiderman A M. Initiation of flight in the unrestrained fly, drosophila melanogaster[J]. Journal of Zoology, 1995, 235(2): 211-222.

[4] Card G, Dickinson M H. Performance trade-offs in the flight initiation of drosophila[J]. Journal of Experimental Biology, 2008, 211(3): 341-353.

[5] Fontaine E I, Zabala F, Dickinson M H, et al. Wing and body motion during flight initiation in drosophila revealed by automated visual tracking[J]. Journal of Experimental Biology, 2009, 212(9): 1307-1323.

[6] Sunada S, Kawachi K, Watanabe I, et al. Performance of a butterfly in take-off flight[J]. Journal of Experimental Biology, 1993, 183(1): 249-277.

[7] Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production[J]. Journal of Experimental Biology, 1973, 59(1): 169-230.

[8] Chen M W, Zhang Y L, Sun M. Wing and body motion and aerodynamic and leg forces during take-off in droneflies[J]. Journal of the Royal Society Interface, 2013, 10(89): 20130808.

[9] Liu Y, Sun M. Wing kinematics measurement and aerodynamics of hovering droneflies[J]. Journal of Experimental Biology, 2008, 211(13): 2014-2025.

[10] Mou X L, Liu Y P, Sun M. Wing motion measurement and aerodynamics of hovering true hoverflies[J]. Journal of Experimental Biology, 2011, 214(17): 2832-2844.

[11] Ellington C P. The aerodynamics of hovering insect flight III: kinematics[J]. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 1984, 305(1122): 17-40.

[12] Etkin B, Reid L D. Dynamics of flight: stability and control[M]. New York: Wiley, 1996: 310-315.

[13] Aono H, Liang F, Liu H. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study[J]. Journal of Experimental Biology, 2008, 211(2): 239-257.

[14] Liang B, Sun M. Aerodynamic interactions between contralateral wings and between wings and body of a model insect at hovering and small speed motions[J]. Chinese Journal of Aeronautics, 2011, 24(4): 396-409.

[15] Yu X, Sun M. A computational study of the wing-wing and wing-body interactions of a model insect[J]. Acta Mechanica Sinica, 2009, 25(4): 421-431.

[16] Rogers S E, Kwak D, Kiris C. Numerical solution of the incompressible Navier-Stokes equations for steady-state and dependent problems[J]. AIAA Journal, 1991, 29(4): 603-610.

[17] Rogers S E, Pulliam T H. Accuracy enhancements for overset grids using a defect correction approach, AIAA-1994-0523[R]. Reston: AIAA, 1994.

[18] Sun M, Yu X. Aerodynamic force generation in hovering flight in a tiny insect[J]. AIAA Journal, 2006, 44(7): 1532-1540.

[19] Xiao T H, Ang H S, Zhou X C. Numerical method for unsteady flows of flexible flapping-wings[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 990-999. (in Chinese) 肖天航, 昂海松, 周新春. 柔性扑翼非定常流场的数值计算方法[J]. 航空学报, 2009, 30(6): 990-999.

[20] Yang W Q, Song B F, Song W P. Distance decreasing method for confirming corresponding cells of overset grids and its application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 205-212. (in Chinese) 杨文青, 宋笔锋, 宋文萍. 高效确定重叠网格对应关系的距离减缩法及其应用[J]. 航空学报,2009, 30(2): 205-212.

[21] Zhao X, Guan H W, Yang Z, et al. An implicit and globally conservative unstructured chimera grid method, AIAA-2011-0777[R]. Reston: AIAA, 2011.

[22] Zhang S J, Zhao X, Guan H W. Development of arbitrary unstructured chimera grid, AIAA-2014-0778[R]. Reston: AIAA, 2014.

文章导航

/