自转旋翼机飞行性能理论建模技术
收稿日期: 2014-02-10
修回日期: 2014-04-08
网络出版日期: 2014-05-01
基金资助
江苏高校优势学科建设工程资助项目;国家自然科学基金(11202097);航空科学基金(2011ZA52014)
Theoretical Modeling Technology for Gyroplane Flight Performance
Received date: 2014-02-10
Revised date: 2014-04-08
Online published: 2014-05-01
Supported by
A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions; National Natural Science Foundation of China (11202097); Aeronautical Science Foundation of China (2011ZA52014)
为研究自转旋翼机的飞行性能理论建模技术,基于基本分析法和配平分析法,对自转旋翼机整机需用功率的建模方法进行了研究,并研究了自转旋翼机的桨盘迎角特性、升阻特性以及自转旋翼桨叶剖面迎角分布特性等.研究表明:建立的基本分析法和配平分析法计算模型均可以准确计算自转旋翼机的整机需用功率和自转旋翼桨盘迎角,两种方法均可用于自转旋翼机飞行性能的分析;小速度时整机需用功率主要来自于自转旋翼功率,大速度时机身废阻功率成为整机需用功率的主要来源;适当增加总距可以提高自转旋翼和整机的升阻比;在自转旋翼设计时可以对桨叶剖面翼型的展向分布进行优化,在桨根处优先采用相对不易失速的翼型以推迟失速对最大飞行速度的限制.
王俊超 , 李建波 , 韩东 . 自转旋翼机飞行性能理论建模技术[J]. 航空学报, 2014 , 35(12) : 3244 -3253 . DOI: 10.7527/S1000-6893.2014.0046
To investigate the theoretical modeling technology of gyroplane flight performance, the modeling method of gyroplane total power required is studied in this paper based on the fundamental analysis method and trim analysis method. Then the gyroplane rotor disk angle of attack characteristics, lift and drag characteristics and angle of attack distribution characteristics of autorotating rotor blade section are investigated. The results indicate that both the fundamental analysis method and trim analysis method can calculate total power required and autorotating rotor disk angle of attack accurately. Both methods can be used to analyze the gyroplane flight performance. The total power required mainly comes from the autorotating rotor power at low speed, and the fuselage parasite power becomes the main source of the total power required at high speed. Increasing the collective pitch properly can increase the lift drag ratio of the autorotating rotor and the gyroplane. In the autorotating rotor design process, the optimization can be applied to the aerofoil spanwise distribution. The airfoil which has excellent stall characteristics can be used at the blade root preferentially to delay the maximum flight speed limit by stall.
Key words: gyroplane; rotor; performance; power; trim; lift drag ratio; angle of attack
[1] Leishman J G. Development of the autogiro: a technical perspective[J]. Journal of Aircraft, 2004, 41(4): 765-781.
[2] Leishman J G. Principles of helicopter aerodynamics[M]. New York: Cambridge University Press, 2006: 692-722.
[3] Anon. British civil airworthiness requirements Section T: light gyroplane design requirements[M]. Cheltenham: U.K. Civil Aviation Authority, 1993: 1-30.
[4] Anon. British civil airworthiness requirements Section T: light gyroplanes (Issue 5)[M]. West Sussex: U.K. Civil Aviation Authority, 2013: 1-10.
[5] Ormiston R A. On the definitions of rotor and rotorcraft power and performance[C]//Americian Helicopter Society 69th Annual Forum & Technology Display. Phoenix: AHS, 2013: 1-16.
[6] Floros M W, Johnson W. Performance analysis of the slowed-rotor compound helicopter configuration[C]//American Helicopter Society 4th Decennial Specialists' Conference on Aeromechanics. San Francisco: AHS, 2004: 1-19.
[7] Leitner R M, Myschik S. Performance analysis of an 18 d multi-body coaxial helicopter[C]//AIAA Model and Simulation Technologies Conference. Portland: AIAA, 2011: 1-12.
[8] Han D. Study on the performance and trim of helicopters with variable speed rotors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1241-1248. (in Chinese) 韩东. 变转速旋翼直升机性能及配平研究[J]. 航空学报, 2013, 34(6): 1241-1248.
[9] Nie Z, Chen M. Calculation and analysis of electric-powered helicopter flight performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(9): 1139-1143. (in Chinese) 聂资, 陈铭. 电动直升机飞行性能计算和分析[J]. 北京航空航天大学学报, 2012, 38(9): 1139-1143.
[10] Hollmann M. Modern gyroplane design[M]. California: Aircraft Designs, Inc., 1992: 1-56.
[11] Crouse G L. Conceptual design of an unmanned gyroplane for an endurance mission[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 1-8.
[12] Harris F D. Introduction to autogyros, helicopters, and other V/STOL aircraft, NASA/SP-2011-215959[R]. California: NASA Ames Research Center, 2011.
[13] Wang H J, Gao Z. Aerodynamic virtue and steady rotary speed of autorotating rotor[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4): 337-339. (in Chinese) 王焕瑾, 高正. 自转旋翼的气动优势和稳定转速[J]. 航空学报, 2001, 22(4): 337-339.
[14] Zhu Q H, Li J B, Ni X P, et al. Study on aerodynamic characteristics of autorotating rotor and jump takeoff performance of gyroplane[J]. Acta Aerodynamica Sinica, 2008, 26(3): 282-286. (in Chinese) 朱清华, 李建波, 倪先平, 等. 旋翼机自转旋翼气动特性及跳飞性能研究[J]. 空气动力学学报, 2008, 26(3): 282-286.
[15] Cui Z, Han D, Li J B. Study on aerodynamic characteristics of auto-rotating rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1791-1799. (in Chinese) 崔钊, 韩东, 李建波. 加装格尼襟翼的自转旋翼气动特性研究[J]. 航空学报, 2012, 33(10): 1791-1799.
[16] Ji L Q, Zhu Q H, Cui Z, et al. Research on aerodynamic characteristics of autorotating coaxial twin-rotor[J]. Journal of Aerospace Power, 2012, 27(9): 2013-2020. (in Chinese) 姬乐强, 朱清华, 崔钊, 等. 共轴双旋翼自转气动特性[J]. 航空动力学报, 2012, 27(9): 2013-2020.
[17] Zhu Q H. Research on key technologies of gyroplane preliminary design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) 朱清华. 自转旋翼飞行器总体设计关键技术研究[D]. 南京: 南京航空航天大学, 2007.
[18] Wang J C, Li J B. Effects of wing on autogyro longitudinal stability[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 151-160. (in Chinese) 王俊超, 李建波. 机翼对自转旋翼机纵向稳定性的影响[J]. 航空学报, 2014, 35(1): 151-160.
[19] Wheatley J B. Lift and drag characteristics and gliding performance of an autogiro as determined in flight, NACA-TR-434[R]. Springfield: NASA Langley Memorial Aeronautical Laboratory, 1932.
/
〈 | 〉 |