蜂窝夹层板撞击实验数据中的野值判别
收稿日期: 2014-01-13
修回日期: 2014-04-11
网络出版日期: 2014-04-30
基金资助
国家空间碎片专题项目(K020110-1/3/6)
Outlier identification from impact experimental data of honeycomb sandwich panel
Received date: 2014-01-13
Revised date: 2014-04-11
Online published: 2014-04-30
Supported by
National Space Debris Thematic Project of China (K020110-1/3/6)
基于超高速撞击物理实验数据对蜂窝夹层板撞击极限方程进行修正是获得高可信度新方程的一种常用方法,为了提高物理实验数据的可靠性,以国外131个碳纤维复合材料(CFRP)面板的蜂窝夹层板实验数据为对象,进行野值判别方法研究,发现该批数据中存在1个野值。将该野值剔除并基于剩余的130个数据重新进行方程修正后,新方程的总体预测率和安全预测率分别达到82.3%和93.1%,其绝对误差平方和、相对误差平方和分别为0.010、0.506,相对于剔除野值前的修正方程有所改善,表明实验数据野值判别方法可行、有效。为考核方法的适用性,对铝合金面板的蜂窝夹层板的实验数据也进行野值判别分析,结果显示该方法可合理识别野值。
贾光辉 , 李轩 , 欧阳智江 . 蜂窝夹层板撞击实验数据中的野值判别[J]. 航空学报, 2015 , 36(2) : 548 -554 . DOI: 10.7527/S1000-6893.2014.0049
To correct the ballistic limit equations of honeycomb sandwich panel based on hypervelocity impact physical experiment data is a common method to obtain high credibility equations. In order to improve the reliability of physical experimental data, a method to distinguish the outliers is studied. Among 131 experimental data of honeycomb sandwich panel with carbon fiber reinforced plastic (CFRP) faceplates, 1 outlier is found using the method. Eliminating the outlier, new equations are obtained by re-correcting the equations based on the rest 130 data. The new equations' totality predicted rate and safety predicted rate reach 82.3% and 93.1%, respectively. And the sum of squared absolute errors and sum of squared relative errors are 0.010 and 0.506, respectively. Compared with the correction equations without eliminating the outlier, the new equations are improved. The results show that the experimental outlier data identification method is feasible and effective. To test the feasibility of the method, the experimental data of honeycomb sandwich panel with aluminum alloy faceplates are also analyzed and the results show that this method can be reasonably used to identify outliers.
[1] Xu F X. Satellite engineering[M]. Beijing: China Aerospace Press, 2002: 89-94 (in Chinese). 徐福祥. 卫星工程[M]. 北京: 中国宇航出版社, 2002: 89-94.
[2] Ryan S, Schaefer F, Destefanis R, et al. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures[J]. Advances in Space Research, 2008, 41(7): 1152-1166.
[3] Jia G H, Ouyang Z J, Jiang H. Analysis and instances of ballistic limit equations' predictive indicators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2364-2371 (in Chinese). 贾光辉, 欧阳智江, 蒋辉. 撞击极限方程预测指标剖析与实例[J]. 航空学报, 2013, 34(10): 2364-2371.
[4] Zhu X Y, Shi Z K. Outlier detection method based on characteristic analyzing of residue[J]. Flight Dynamics, 2008, 26(6): 79-83 (in Chinese). 朱新岩, 史忠科. 基于残差特性分析的野值检测与剔除方法[J]. 飞行力学, 2008, 26(6): 79-83.
[5] Wu J Y, Zheng J H, Ding J H. Study of the method of distinguishing and rejecting outliers during range measurement[J]. Tactical Missile Technology, 2011(2): 98-100 (in Chinese). 吴建业, 郑建辉, 丁军辉. 靶场测量中野值的判别与剔除方法研究[J]. 战术导弹技术, 2011(2): 98-100.
[6] Christiansen E L. Design and performance equations for advanced meteoroid and debris shields[J]. International Journal of Impact Engineering, 1993, 14(1-4): 145-156.
[7] Drolshagen G, Borge J. ESABASE/debris meteoroid/debris impact analysis technical description[R]. Paris: European Space Agency, 1992.
[8] Hu Z D. Numerical investigations of space debris hypervelocity impact on spacecraft honeycomb panel structure[D]. Beijing: Beihang University, 2008 (in Chinese). 胡震东. 碎片对航天器蜂窝夹层板结构超高速碰撞研究[D]. 北京: 北京航空航天大学, 2008.
[9] Ryan S, Schaefer F, Destefanis R, et al. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures[J]. Advances in Space Research, 2008, 41(7): 1152-1166.
[10] Lambert M, Schaefer F K, Geyer T. Impact damage on sandwich panels and multi-layer insulation[J]. International Journal of Impact Engineering, 2001, 26(1-10): 369-380.
[11] Taylor E A, Herbert M K, Vaughan B, et al. Hypervelocity impact on carbon fibre reinforced plastic/aluminium honeycomb: comparison with Whipple bumper shields[J]. International Journal of Impact Engineering, 1999, 23(1): 883-893.
[12] Schfer F, Destefanis R, Ryan S, et al. Hypervelocity impact testing of CFRP/Al honeycomb satellite structures[C]//Proceedings of the 4th European Conference on Space Debris. Darmstadt: ESA Publications Division, 2005: 407-412.
[13] Ryan S, Christiansen E L. Micrometeoroid and orbital debris (MMOD) shield ballistic limit analysis program, NASA/TM-2009-214789[R]. Washington, D.C.: NASA, 2010.
[14] Schaefer F, Schneider E, Lambert M. Review of ballistic limit equations for CFRP structure walls of satellites[C]//Proceedings of the 5th International Symposium on Environmental Testing for Space Programs. Noordwijk: ESA Publications Division, 2004: 431-443.
[15] Lu Y L, He J Z, An J, et al. Research on rules for eliminating outliers and its application to target prediction[J]. Command Control & Simulation, 2011, 33(4): 98-102 (in Chinese). 卢元磊, 何佳洲, 安瑾, 等. 几种野值剔除准则在目标预测中的应用研究[J]. 指挥控制与仿真, 2011, 33(4): 98-102.
[16] Turner R J, Taylor E A, Mcdonnell J A M, et al. Cost effective honeycomb and multi-layer insulation debris shields for unmanned spacecraft[J]. International Journal of Impact Engineering, 2001, 26(1-10): 785-796.
/
〈 | 〉 |