电子与控制

航空变频电源下笼型感应电机矩形转子槽结构优化分析

  • 杜肖飞 ,
  • 侯砚泽 ,
  • 孙楚 ,
  • 周元钧
展开
  • 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
    2. 北京空间技术研制试验中心, 北京 100094
杜肖飞 男,博士研究生。主要研究方向:航空电机设计与分析。Tel:010-82317304 E-mail:xfdu@asee.buaa.edu.cn;侯砚泽 男,博士。主要研究方向:切换系统和自适应控制。E-mail:egibus@163.com;孙楚 男,硕士研究生。主要研究方向:电机设计与控制。E-mail:buaa_sun@126.com;周元钧 女,博士,教授,博士生导师。主要研究方向:电机驱动及余度控制。Tel:010-82317304 E-mail:zhouyuanjun@buaa.edu.cn

收稿日期: 2014-02-10

  修回日期: 2014-04-14

  网络出版日期: 2014-04-21

Optimization analysis of rectangular rotor slot of cage induction motor operating with aero variable frequency power

  • DU Xiaofei ,
  • HOU Yanze ,
  • SUN Chu ,
  • ZHOU Yuanjun
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
    2. Institute of Manned Space System Engineering, Beijing 100094, China

Received date: 2014-02-10

  Revised date: 2014-04-14

  Online published: 2014-04-21

摘要

当前大功率的航空发电机开始采用360~800 Hz的变频输出方式,在航空变频电源的直接供电下,感应电机的性能受到频率变化最大的影响是在高频时起动转矩太低。针对笼型感应电机,采用解析计算的方法对矩形转子槽尺寸进行优化,在不改变稳态性能的条件下获得最大起动转矩。深槽尺寸的变化将影响集肤效应系数和槽漏感2个方面,二者对起动转矩的作用相反。通过综合2个方面的因素,建立起包含槽型尺寸和频率的动态转子参数模型,并采用该动态转子参数对传统的转矩公式进行调整,进而获得关于转子槽尺寸的起动力矩解析式,同时基于该解析式实现对起动力矩的优化。采用该解析方法对7.5 kW感应电机进行深槽转子优化,并对航空变频电源驱动时的起动特性进行了仿真和样机实验,验证了该方法在矩形转子槽优化设计中的有效性。

本文引用格式

杜肖飞 , 侯砚泽 , 孙楚 , 周元钧 . 航空变频电源下笼型感应电机矩形转子槽结构优化分析[J]. 航空学报, 2015 , 36(2) : 614 -624 . DOI: 10.7527/S1000-6893.2014.0052

Abstract

Currently high power aero-generators start to adopt variable frequency power output ranging from 360 Hz to 800 Hz, the most distinct influence of which is low starting torque of induction motor at high frequency when the variable frequency power is supplied directy. An analytical method is proposed to optimize the rectangular rotor slot of cage induction motor for starting torque maximization under the premise of invariant steady-state performance. Skin effect coefficient and slot leakage are affected by slot modification and will produce both positive and negative effects on starting torque. Combining the two factors, a dynamic rotor parameter model including slot sizes and frequency is established to revise the traditional torque formula and the starting torque equation regarding rotor slot sizes is obtained, which gains ground for the starting torque optimization. The rotor slot of a 7.5 kW induction motor is optimized with analytical method. Simulation and tests were conducted to verify the starting characteristics of the motor under aero variable frequency power supply, which verified the effectiveness of the optimization method for rectangular rotor slot.

参考文献

[1] Jones R I. The more electric aircraft: the past and the future?[C]// IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft. Herts, London: IET, 1999: 1/1-1/4.

[2] Mecrow B, Cullen J, Mellor P. Editorial-electrical ma-chines and drives for the more electric aircraft[J]. IET Electric Power Applications, 2011, 5(1): 1-2.

[3] Olaiya M, Buchan N. High power variable frequency generator for large civil aircraft [C]//IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft. Herts, London: IET, 1999: 3/1-3/4.

[4] Provost M J. The more electric aero-engine: a general overview from an engine manufacturer[C]//International Conference on Power Electronics, Machines and Drives. Herts, London: IET, 2002: 246-251.

[5] Avery C R, Burrow S G, Mellor P H. Electrical genera-tion and distribution for the more electric aircraft[C]//Proceedings of 42nd International Universities Power Engineering Conference. Piscataway, NJ: IEEE, 2007: 1007-1012.

[6] Huang W X, Hu Y W. Research of the DTC control strategy for induction generator used in aircraft high voltage DC power system[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(4): 377-380 (in Chinese). 黄文新, 胡育文. 用于航空高压直流电源系统的笼型异步发电机控制策略的研究[J]. 航空学报, 2002, 23(4): 377-380.

[7] Liu L S, Hu Y W, Huang W X. Research on calculation of leakage reactance of dual stator-winding induction generator[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1): 109-114 (in Chinese). 刘陵顺, 胡育文, 黄文新. 定子双绕组异步发电机漏电抗计算的研究[J]. 航空学报, 2006, 27(1): 109-114.

[8] RTCA DO-160G Environmental conditions and test procedures for air-borne equipment[S]. Washington D. C.: Radio Technical Commission for Aeronautics, 2010.

[9] Moir I, Seabridge A. Aircraft systems: mechanical, electrical and avionics subsystems integration[M]. Hoboken, NJ: Wiley, 2008: 27, 212.

[10] Benarous M. Design of a direct on-line induction motor for variable frequency aerospace application[C]// Proceedings of the 3rd IET International Conference on Power Electronics, Machines and Drives. Herts, London: IET, 2006: 202-206.

[11] Matheson E, Karimi K. Power quality specification development for more electric airplane architectures[J]. Electronic Library, 2002, 1998: 8-28.

[12] Kabbaj H, Roboam X, Lefevre Y, et al. Skin effect characterization in a squirrel cage induction ma-chine[C]//Proceedings of the IEEE International Symposium on Industrial Electronics. Piscataway, NJ: IEEE, 1997: 532-536.

[13] Alger P L. The nature of induction machines[M]. Lon-don: Gordon and Breach, 1965: 265-272.

[14] Klingshirn E A, Jordan H E. Simulation of polyphase induction machines with deep rotor bars[J]. IEEE Transactions on Power Apparatus and Systems, 1970 PAS-89(6): 1038-1043.

[15] Yan D J, Liu R F, Hu M Q, et al. Transient starting perfor-mance of squirrel cage induction motor with time-stepping FEM[J]. Electric Machines and Control, 2003, 7(3): 177-181 (in Chinese). 严登俊, 刘瑞芳, 胡敏强, 等. 鼠笼异步电机起动性能的时步有限元计算[J]. 电机与控制学报, 2003, 7(3): 177-181.

[16] Lin D, Zhou P. An improved dynamic model for the simulation of three-phase induction motors with deep rotor bars[C]//Proceedings of International Conference on Electrical Machines and Systems. Piscataway, NJ: IEEE, 2008: 3810-3814.

[17] Xie L R, Wang Z Y, Chao Q. Research on the mechanical characteristic of squirrel cage induction motors[J]. Proceedings of the CSEE, 2008, 28(21): 68-72 (in Chinese). 谢丽蓉, 王智勇, 晁勤. 鼠笼异步电动机机械特性的研究[J]. 中国电机工程学报, 2008, 28(21): 68-72.

[18] Pedra J, Candela I, Sainz L. Modelling of squirrel-cage induction motors for electromagnetic transient programs[J]. IET Electric Power Applications, 2009, 3(2): 111-122.

[19] Repo A K, Rasilo P, Arkkio A. Dynamic electromagnetic torque model and parameter estimation for a deep-bar induction machine[J]. IET Electric Power Applications, 2008, 2(3): 183-192.

[20] Appelbaum J. Determination of slot dimensions of double squirrel-cage and deep-bar rotors[J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(4): 1513-1518.

[21] Ikeda M, Hiyama T. Simulation studies of the transients of squirrel-cage induction motors[J]. IEEE Transactions on Energy Conversion, 2007, 22(2): 233-239.

[22] Smith A C, Healey R C, Williamson S. A transient in-duction motor model including saturation and deep bar effect[J]. IEEE Transactions on Energy Conversion, 1996, 11(1): 8-15.

[23] Chen S K. Electrical machine design[M]. Beijing: Me-chanical Industry Press, 2000: 50-62 (in Chinese). 陈世坤. 电机设计[M]. 北京: 机械工业出版社, 2000: 50-62.

[24] Boldea I, Nasar S A. The induction machine hand-book[M]. New York: CRC Press, 2002: 140.

文章导航

/