集成BLISCO和iPMA的多学科可靠性设计优化
收稿日期: 2014-02-19
修回日期: 2014-04-09
网络出版日期: 2014-04-11
基金资助
国家自然科学基金(51175019); 福建省科技计划重点项目(2013H0001); 福州市科技计划项目(2012-G-108,2013-G-90); 江苏省自然科学基金(BK20130999); 江苏省普通高校自然科学研究资助项目(13KJB460012)
Reliability-based Multidisciplinary Design Optimization Integrating BLISCO and iPMA
Received date: 2014-02-19
Revised date: 2014-04-09
Online published: 2014-04-11
Supported by
National Natural Science Foundation of China (51175019); Fujian Province Science and Technology Program Major Project (2013H0001); Science and Technology Program Project in Fuzhou City (2012-G-108,2013-G-90); Natural Science Foundation of Jiangsu Province (BK20130999); Natural Science Foundation of Colleges and Universities in Jiangsu Province (13KJB460012)
为解决传统的基于可靠性的多学科设计优化(RBMDO)由于存在优化过程多层嵌套、多学科分析和可靠性分析反复迭代而导致的低效率问题,提出集成两级集成系统协同优化(BLISCO)策略和改进功能测度法(iPMA)的多学科可靠性设计优化方法.首先,基于序列化思想将多学科可靠性设计优化解耦,避免了每次多学科设计优化(MDO)对完整可靠性分析模型的反复调用与迭代.其次,采用高效的更适合复杂工程组织形式的BLISCO策略进行确定性多学科设计优化,摒弃了协同优化的一致性约束和两级集成系统综合法的复杂分析和近似建模问题,提高了计算效率.然后,基于角度更新策略对功能测度法(PMA)进行改进,采用更新角度替代极限状态函数值进行可靠性分析与判别,减少了多学科可靠性分析次数.最后,结合某机型起落架的缓冲器设计实例对所提方法进行验证,结果表明该方法的计算效率较其他方法分别提高了30.93%和19.97%,验证了方法的有效性,且具有工程实用价值.
刘成武 , 靳晓雄 , 刘云平 , 刘继红 . 集成BLISCO和iPMA的多学科可靠性设计优化[J]. 航空学报, 2014 , 35(11) : 3054 -3063 . DOI: 10.7527/S1000-6893.2014.0047
To solve the inefficient problem of reliability-based multidisciplinary design optimization (RBMDO), which is caused by the nested optimization process and repeated iterations of multidisciplinary analysis and reliability analysis, a new method integrating Bi-level integrated system collaborative optimization (BLISCO) and improved performance measure approach (iPMA) is proposed. Firstly, with the sequential idea, the whole process is decoupled and the repeatedly reliability analysis of overall reliability model is avoided. Then, an efficient and suitable BLISCO strategy for dealing with the multidisciplinary design optimization (MDO) of complex engineering system is adopted, which abandons the consistency constraints of collaborative optimization as well as the complex analysis and approximate modeling problems of Bi-level integration system synthesis. Thirdly, the performance measure approach (PMA) is improved by updating angle strategy to evaluate the reliability, which can reduce a great number of multidisciplinary reliability analysis. Finally, a shock absorber design example of landing gear has been implemented to verify the efficiency of the proposed method. The results show that the efficiency of the proposed method has been improved by 30.93% and 19.97% respectively compared to the other two methods. Therefore, it is valuable in engineering design and optimization.
[1] Sobieski J S, Haftka R T. Multidisciplinary aerospace design optimization: survey of recent developments[J]. Structural and Multidisciplinary Optimization, 1997, 14(1): 1-23.
[2] Kang Z, Luo Y. Reliability-based structural optimization with probability and convex set hybrid models[J]. Structural and Multidisciplinary Optimization, 2010, 42(1): 89-102.
[3] Agarwal H, Renaud J, Preston L, et al. Uncertainty quantification using evidence theory in multidisciplinary design optimization[J]. Reliability Engineering & System Safety, 2004, 85(1-3): 281-294.
[4] Aoues Y, Chateauneuf A. Benchmark study of numerical methods for reliability-based design optimization[J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 277-294.
[5] Sues R H, Cesare M A. An innovative framework for reliability-based MDO[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2000: 1-8.
[6] Padmanabhan D, Batill S M. Decomposition strategies for reliability based optimization in multidisciplinary system design[C]//AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2002: 1-15.
[7] Du X, Guo J, Harish B. Sequential optimization and reliability assessment for multidisciplinary systems design[J]. Structural and Multidisciplinary Optimization, 2008, 35(2): 117-130.
[8] Ahn J, Kwon J H. An efficient strategy for reliability-based multidisciplinary design optimization using BLISS[J]. Structure and Multidisciplinary Optimization, 2006, 31(5): 363-372.
[9] Huang H Z,Yu H, Yuan Y H, et al. Individual disciplinary feasible method for reliability based multidisciplinary design optimization[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1871-1876.(in Chinese) 黄洪钟, 余辉, 袁亚辉, 等. 基于单学科可行法的多学科可靠性设计优化[J]. 航空学报, 2009, 30(10): 1871-1876.
[10] Sun J X, Zhang L Q, Chen J J, et al. Reliability-based multidisciplinary design optimization integrating collaborative optimization strategy and performance measurement approach[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(8): 1373-1379. (in Chinese) 孙建勋, 张立强, 陈建江, 等. 集成协同优化策略与性能测量法的多学科可靠性设计优化[J]. 计算机辅助设计与图形学学报, 2011, 23(8): 1373-1379.
[11] Yu M, Liu Y T, Li L, et al. Reliability-based multidisciplinary design optimization of centrifugal impeller with double-loop strategy[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 650-657. (in Chinese) 于明, 刘永涛, 李磊, 等. 基于双循环的离心叶轮多学科可靠性优化设计[J]. 航空学报, 2012, 33(4): 650-657.
[12] Liu Y P, Zhang J, Zhang B, et al. Multidisciplinary reliability design and optimization based on BLISS and PMA[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2349-2356. (in Chinese) 刘云平, 张俊, 张冰, 等. 基于BLISS和PMA的多学科可靠性优化设计[J]. 航空学报, 2013, 34(10): 2349-2356.
[13] Tong L S, Shi B Q, Shen Y H, et al. First-order reliability method based multidisciplinary design optimization on gear transmission[J]. Journal of Mechanical Engineering, 2010, 46(3): 42-46. (in Chinese) 仝令胜, 石博强, 申焱华, 等. 基于FORM的齿轮传动多学科优化[J]. 机械工程学报, 2010, 46(3): 42-46.
[14] Zhao M, Cui W C. On the development of bi-level integrated system collaborative optimization[J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 73-84.
[15] Chen Z Z, Qiu H B, Gao L, et al. An adaptive decoupling approach for reliability-based design optimization[J]. Computers and Structures, 2013, 117(2): 58-66.
[16] Norman S C. Aircraft landing gear design: principles and practices[M]. Washington D.C.: America Institute of Aeronautics and Astronautics, Inc., 1988: 69-122.
/
〈 | 〉 |