一种适用于快速分解后向投影聚束SAR成像的自聚焦方法
收稿日期: 2013-09-27
修回日期: 2014-04-04
网络出版日期: 2014-04-10
基金资助
国家自然科学基金(61301280)
An Autofocus Method for Spotlight SAR Imagery Created by Fast Factorized Back-projection
Received date: 2013-09-27
Revised date: 2014-04-04
Online published: 2014-04-10
Supported by
National Natural Science Foundation of China (61301280)
基于孔径分解和图像递归融合的快速分解后向投影(FFBP)算法具备接近频域算法的运算复杂度和媲美后向投影(BP)算法的聚焦性能。但与频域成像算法不同,使用FFBP算法重建的直角坐标系图像或极坐标系图像均无法满足传统自聚焦方法的使用条件。为了解决这个问题,首先,提出了虚拟极坐标系作为FFBP算法的图像重建平面,为自聚焦方法的使用奠定了基础;其次,以基于回波数据的运动补偿为目标,充分利用FFBP算法多孔径递归融合的特点,将多孔径图像偏移(MAM)的相位估计方法嵌套到FFBP算法的各个阶段,从而实现MAM与FFBP算法的紧密相容;最后,通过实测数据处理验证了该方法的可行性和有效性。
李浩林 , 陈露露 , 张磊 , 邢孟道 , 保铮 . 一种适用于快速分解后向投影聚束SAR成像的自聚焦方法[J]. 航空学报, 2014 , 35(7) : 2011 -2018 . DOI: 10.7527/S1000-6893.2013.0040
Fast factorized back-projection (FFBP) is an effective algorithm constructed based on aperture factorized and image recursive fusion. It is shown that the number of operations can be made comparable to frequency domain algorithms and the image quality is barely sacrificed compared with back-projection (BP). Different from frequency domain algorithms, rectangular coordinate system images and polar coordinate system images reconstructed by FFBP cannot satisfy the requirement of traditional autofocus. To solve this problem, we establish a pseudo-polar coordinate system for reconstruction in FFBP firstly, which paves a way for autofocusing method. Secondly, multi-aperture operations are not only performed in FFBP but also are used in multiple aperture mapdrift (MAM), This characteristic becomes a great advantage to incorporate MAM into FFBP iterations seemly and achieve the success of data based motion compensation. Finally, the results of collected data sets validate the feasibility and effectiveness of the proposed approach.
[1] Mao X H, Zhu D Y, Zhu Z D. 2-D autofocus algorithm for ultra-high resolution airborne spotlight SAR imaging[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1289-1295. (in Chinese) 毛新华, 朱岱寅, 朱兆达. 一种超高分辨率机载聚束SAR两维自聚焦算法[J]. 航空学报, 2012, 33(7): 1289-1295.
[2] Bu Y L, Pan L, Niu Y F, et al. Modeling and accuracy analysis of parameter transimission in INS/SAR integrated navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 526-533. (in Chinese) 卜彦龙, 潘亮, 牛轶峰, 等. INS/SAR组合导航参数传递建模及精度分析[J]. 航空学报, 2009, 30(3): 526-533.
[3] Kirk J C Jr. Signal based motion compensation (SBMC)//Proceedings of IEEE International Radar Conference. New York: IEEE Aerospace and Electronic Systems Society, 2000: 463-468.
[4] Zhu D Y, Jiang R, Mao X H, et al. Multi-subaperture PGA for SAR autofocusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 468-488.
[5] Yang L, Xing M D, Wang Y, et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 165-169.
[6] Zhang L, Sheng J L, Xing M D. Wavenumber-domain autofocusing for highly squinted UAV SAR imagery[J]. IEEE Sensors Journal, 2012, 12(5): 1574-1588.
[7] Jakowatz C V Jr, Wahl D E, Yocky D A. Beamforming as a foundation for spotlight-mode SAR image formation by backprojection//Proceedings of SPIE. Bellingham, WA: SPIE, 2008: 69700Q-1——69700Q-15.
[8] Munson D C Jr, O'Bruen I D, Jenkins W K. A tomographic formulation of spotlight-mode synthetic aperture radar//Proceedings of IEEE Radar Conference, 1983, 71(8): 917-925.
[9] Ulander L M H, Hellsten H, Stenstrm G. Synthetic aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760-776.
[10] Jakowatz C V Jr, Wahl D E. Considerations for autofocus of spotlight-mode SAR imagery created using a beamforming algorithm//Proceedings of SPIE. Bellingham, WA: SPIE, 2008: 73370A-1-73370A-9.
[11] Hellsten H, Dammert P, hlander A. Autofocus in fast factorized backprojection for processing of SAR images when geometry parameters are unknown//Proceedings of IEEE Radar Conference. Piscataway, NJ: IEEE, 2010: 603-608.
[12] Ash J N. An autofocus method for backprojection imagery in synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 104-108.
[13] Carrara W G, Goodman R S, Majewski R M. Spotlight synthetic aperture radar: signal processing algorithm [M]. Boston, MA: Artech House, 1995: 46-260.
[14] Li H L, Zhang L, Yang L, et al. A novel fast factorized back-projection algorithm for synthetic aperture radar imagery[J]. Journal of Electronics & Information Technology, 2013, 35(6): 1435-1441. (in Chinese) 李浩林, 张磊, 杨磊, 等. 一种改进的快速分解后向投影SAR成像算法[J]. 电子与信息学报, 2013, 35(6): 1435-1441.
[15] Bleszynski E, Bleszynski M, Jaroszewicz T. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures[J]. Inverse Problems, 2013, 29(5): 54004-54045.
/
〈 |
|
〉 |