基于流场/声场混合模型的叶轮机械单音噪声研究
收稿日期: 2013-09-30
修回日期: 2014-03-06
网络出版日期: 2014-04-08
基金资助
国家自然科学基金(51276149)
Turbomachinery Tonal Noise Study Based on Flow-field/acoustic-field Hybrid Model
Received date: 2013-09-30
Revised date: 2014-03-06
Online published: 2014-04-08
Supported by
National Natural Science Foundation of China (51276149)
王良锋 , 乔渭阳 , 纪良 , 仝帆 . 基于流场/声场混合模型的叶轮机械单音噪声研究[J]. 航空学报, 2014 , 35(9) : 2481 -2490 . DOI: 10.7527/S1000-6893.2014.0014
Turbomachinery tonal noise hybrid prediction model (URANS/DBAA) is developed successfully based on the three-dimensional unsteady Reynolds-averaged Navier-Stokes (URANS) equations and the ducted blade-rows acoustic analogy (DBAA) theory. In the URANS/DBAA hybrid model, the detailed design parameters of the turbomachinery blades can be related to the noise level, and the computational load is not required so much because the Lighthill's acoustic analogy theory is used. The tonal noise of a single stage axial fan is predicted based on the URANS/DBAA hybrid model and the characteristics of the noise sources distribution on the blade surface are analyzed in detail. The results indicate that the URANS/DBAA hybrid model can simulate the turbomachinery tonal noise correctly and it can be used to recognize and analyze the primary rules of the turbomachinery tonal noise.
Key words: tonal noise; acoustic analogy; hybrid model; turbomachinery; axial fan
[1] Qiao W Y. Aero-engine aeroacousitcs[M]. Beijing: Beihang University Press, 2010: 1-8. (in Chinese) 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010: 1-8.
[2] Heidmann M F. Interim prediction method for fan and compressor source noise, NASA TM X-71763[R]. Washington, D.C.: NASA, 1975.
[3] Kontos K B, Janardan B A, Gliebe P R. Improved NASA-ANOPP noise prediction computer code for advanced subsonic propulsion system. Volume 1: ANOPP evaluation and fan noise model improvement, NASA CR 195480[R]. Washington, D.C.: NASA, 1996.
[4] Hough J W, Weir D S. Aircraft noise prediction program (ANOPP) fan noise prediction for small engines, NASA CR 198300[R]. Washington, D.C.: NASA, 1996.
[5] Smith M J T, Bushell K W. Turbine noise -its signification in the civil aircraft noise problem, No.69-WA/GT-12[C]//ASME, 1969.
[6] Dunn D G, Peart N A. Aircraft noise source and contour estimation, NASA CR-114649[R]. Washington, D.C.: NASA, 1973.
[7] Matta R K, Sandusky G T, Doyle V L. GE core engine noise investigation-low emission engine, FAA-RD-77-4, AD A048590[R]. Cincinnati: Aircraft Engine Group, General Electric Company, 1977.
[8] Ventres C S. Turbofan noise generation. Volume 2: computer programs, NASA CR-167952[R]. Washington, D.C.: NASA, 1983.
[9] Ventres C S. Turbofan noise generation. Volume 1: analysis, NASA CR-167952[R]. Washington, D.C.: NASA, 1983.
[10] Meyer H D, Envia E. Aeroacoustic analysis of turbofan noise generation, NASA CR-4715[R]. Washington, D.C.: NASA, 1996.
[11] Montgomery M D. A three-dimensional linearized unsteady Euler analysis for turbomachinery blade rows, NASA CR-4770[R]. Washington, D.C.: NASA, 1997.
[12] Sawyer S, Nallasamy M, Hixonet R. Computational aeroacoustic prediction of discrete-frequency noise generated by a rotor-stator interaction[C]//9th AIAA/CEAS Aeroacoustics Conference and Exhibit, 2003: 12-14.
[13] Elhadidi B, Atassi H M. Passive noise control by blade lean and sweep[C]//10th AIAA/CEAS Aeroaoustics Conference, 2004: 10-12.
[14] Tam C K W. Computational aeroacoustics: an overview of computational challenges and applications[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6): 547-567.
[15] Naoki T, Yoshiya N. Fan noise prediction using unsteady CFD analysis[C]//8th AIAA/CEAS Aeroacoustics Conference & Exhibit, 2002.
[16] Tsuchiya N, Nakamura Y, Yamagata A, et al. Investigation of acoustic modes generated by rotor-stator interaction[C]//9th AIAA/CEAS Aero-acoustics Conference, 2003.
[17] Keisuke T, Nobuhiko Y. Improved hybrid prediction of fan noise[C]//15th AIAA/CEAS Aeroacoustics Conference, 2009.
[18] Polacsek C, Burguburu S, Redonnetet C. Numerical simulations of fan interaction noise using a hybrid approach[C]//11th AIAA/CEAS Aeroacoustics Conference, 2005.
[19] WeckmÜeller C, Guerin S, Ashcroft G. CFD-CAA coupling applied to DLR UHBR-fan: comparison to experimental data[C]//15th AIAA/CEAS Aeroacoustics Conference, 2009.
[20] Lebrun M, Favre C H. Fan-OGV unsteady Navier-Stokes computation using an adapted acoustic mesh[C]//10th AIAA/CEAS Aeroacoustics Conference, 2004.
[21] Ovenden N C, Rienstra S W. In-duct matching stragies[M]. Eindhoven: Eindhoven University of Technology, 2002: 4-8.
[22] Zhao L. Theory and method investigation of the aerodynamic-acoustics integration design in turbine[D]. Xi'an: Northwestern Polytechnical University, 2012. (in Chinese) 赵磊. 涡轮气动-声学一体化设计理论及方法研究[D]. 西安: 西北工业大学, 2012.
[23] Goldstein M E. Aeroacoustics[M]. New York: McGraw-Hill International Book Co., 1976: 190-195.
[24] Krejsa E A, Valerino M F. Interim prediction method for turbine noise, NASA-TM-X-73566[R]. Washington, D.C.: NASA, 1974.
[25] Fisk W S. Supersonic transport noise reduction technology summary-phase 1, FAA-SS-1772-43[R]. Cincinnati: General Electric Co., 1972.
[26] Sun X F, Hu Z A, Zhou S. Noise prediction of rotor-stator interaction for fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(1): 41-47. (in Chinese) 孙晓峰, 胡宗安, 周盛. 风扇/压气机转子、静子干涉噪声的预测方法[J]. 航空学报, 1989, 10(1): 41-47.
[27] Pieter S, Jörgen Z. In-duct and far-field mode detection techniques[C]//13th AIAA/CEAS Aero-acoustics Conference, 2007.
[28] Tyler J M, Sofrin T G. Axial flow compressor noise studies[J]. Transactions of the Society of Automotive Engineers, 1962, 70: 309-332.
/
〈 | 〉 |