流体力学与飞行力学

基于流场/声场混合模型的叶轮机械单音噪声研究

  • 王良锋 ,
  • 乔渭阳 ,
  • 纪良 ,
  • 仝帆
展开
  • 西北工业大学 动力与能源学院, 陕西 西安 710072
王良锋 男,博士研究生。主要研究方向:轴流机械气动声学。Tel:029-88482195 E-mail:wlfzxlgnl@126.com;乔渭阳 男,博士,教授,博士生导师。主要研究方向:叶轮机气体动力学,发动机气动声学。Tel:029-88482195 E-mail:qiaowy@nwpu.edu.cn

收稿日期: 2013-09-30

  修回日期: 2014-03-06

  网络出版日期: 2014-04-08

基金资助

国家自然科学基金(51276149)

Turbomachinery Tonal Noise Study Based on Flow-field/acoustic-field Hybrid Model

  • WANG Liangfeng ,
  • QIAO Weiyang ,
  • JI Liang ,
  • TONG Fan
Expand
  • School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-09-30

  Revised date: 2014-03-06

  Online published: 2014-04-08

Supported by

National Natural Science Foundation of China (51276149)

摘要

基于叶轮机械三维非定常黏性数值模拟(URANS)与管道内叶片排气动噪声声类比理论(DBAA),成功地发展了叶轮机械单音噪声混合预测模型(URANS/DBAA),该模型能够实现叶轮机械叶片详细设计参数与噪声辐射强度的关联。由于采用了Lighthill声类比理论,使得该模型并不需要耗费大量计算资源。基于URANS/DBAA混合模型,对某单级轴流风扇的单音噪声及其噪声源分布特性进行了详细的计算分析,结果表明,该混合模型能够准确模拟叶轮机械单音噪声,实现了对叶轮机械单音噪声基本规律的分析和认识。

本文引用格式

王良锋 , 乔渭阳 , 纪良 , 仝帆 . 基于流场/声场混合模型的叶轮机械单音噪声研究[J]. 航空学报, 2014 , 35(9) : 2481 -2490 . DOI: 10.7527/S1000-6893.2014.0014

Abstract

Turbomachinery tonal noise hybrid prediction model (URANS/DBAA) is developed successfully based on the three-dimensional unsteady Reynolds-averaged Navier-Stokes (URANS) equations and the ducted blade-rows acoustic analogy (DBAA) theory. In the URANS/DBAA hybrid model, the detailed design parameters of the turbomachinery blades can be related to the noise level, and the computational load is not required so much because the Lighthill's acoustic analogy theory is used. The tonal noise of a single stage axial fan is predicted based on the URANS/DBAA hybrid model and the characteristics of the noise sources distribution on the blade surface are analyzed in detail. The results indicate that the URANS/DBAA hybrid model can simulate the turbomachinery tonal noise correctly and it can be used to recognize and analyze the primary rules of the turbomachinery tonal noise.

参考文献

[1] Qiao W Y. Aero-engine aeroacousitcs[M]. Beijing: Beihang University Press, 2010: 1-8. (in Chinese) 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010: 1-8.

[2] Heidmann M F. Interim prediction method for fan and compressor source noise, NASA TM X-71763[R]. Washington, D.C.: NASA, 1975.

[3] Kontos K B, Janardan B A, Gliebe P R. Improved NASA-ANOPP noise prediction computer code for advanced subsonic propulsion system. Volume 1: ANOPP evaluation and fan noise model improvement, NASA CR 195480[R]. Washington, D.C.: NASA, 1996.

[4] Hough J W, Weir D S. Aircraft noise prediction program (ANOPP) fan noise prediction for small engines, NASA CR 198300[R]. Washington, D.C.: NASA, 1996.

[5] Smith M J T, Bushell K W. Turbine noise -its signification in the civil aircraft noise problem, No.69-WA/GT-12[C]//ASME, 1969.

[6] Dunn D G, Peart N A. Aircraft noise source and contour estimation, NASA CR-114649[R]. Washington, D.C.: NASA, 1973.

[7] Matta R K, Sandusky G T, Doyle V L. GE core engine noise investigation-low emission engine, FAA-RD-77-4, AD A048590[R]. Cincinnati: Aircraft Engine Group, General Electric Company, 1977.

[8] Ventres C S. Turbofan noise generation. Volume 2: computer programs, NASA CR-167952[R]. Washington, D.C.: NASA, 1983.

[9] Ventres C S. Turbofan noise generation. Volume 1: analysis, NASA CR-167952[R]. Washington, D.C.: NASA, 1983.

[10] Meyer H D, Envia E. Aeroacoustic analysis of turbofan noise generation, NASA CR-4715[R]. Washington, D.C.: NASA, 1996.

[11] Montgomery M D. A three-dimensional linearized unsteady Euler analysis for turbomachinery blade rows, NASA CR-4770[R]. Washington, D.C.: NASA, 1997.

[12] Sawyer S, Nallasamy M, Hixonet R. Computational aeroacoustic prediction of discrete-frequency noise generated by a rotor-stator interaction[C]//9th AIAA/CEAS Aeroacoustics Conference and Exhibit, 2003: 12-14.

[13] Elhadidi B, Atassi H M. Passive noise control by blade lean and sweep[C]//10th AIAA/CEAS Aeroaoustics Conference, 2004: 10-12.

[14] Tam C K W. Computational aeroacoustics: an overview of computational challenges and applications[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6): 547-567.

[15] Naoki T, Yoshiya N. Fan noise prediction using unsteady CFD analysis[C]//8th AIAA/CEAS Aeroacoustics Conference & Exhibit, 2002.

[16] Tsuchiya N, Nakamura Y, Yamagata A, et al. Investigation of acoustic modes generated by rotor-stator interaction[C]//9th AIAA/CEAS Aero-acoustics Conference, 2003.

[17] Keisuke T, Nobuhiko Y. Improved hybrid prediction of fan noise[C]//15th AIAA/CEAS Aeroacoustics Conference, 2009.

[18] Polacsek C, Burguburu S, Redonnetet C. Numerical simulations of fan interaction noise using a hybrid approach[C]//11th AIAA/CEAS Aeroacoustics Conference, 2005.

[19] WeckmÜeller C, Guerin S, Ashcroft G. CFD-CAA coupling applied to DLR UHBR-fan: comparison to experimental data[C]//15th AIAA/CEAS Aeroacoustics Conference, 2009.

[20] Lebrun M, Favre C H. Fan-OGV unsteady Navier-Stokes computation using an adapted acoustic mesh[C]//10th AIAA/CEAS Aeroacoustics Conference, 2004.

[21] Ovenden N C, Rienstra S W. In-duct matching stragies[M]. Eindhoven: Eindhoven University of Technology, 2002: 4-8.

[22] Zhao L. Theory and method investigation of the aerodynamic-acoustics integration design in turbine[D]. Xi'an: Northwestern Polytechnical University, 2012. (in Chinese) 赵磊. 涡轮气动-声学一体化设计理论及方法研究[D]. 西安: 西北工业大学, 2012.

[23] Goldstein M E. Aeroacoustics[M]. New York: McGraw-Hill International Book Co., 1976: 190-195.

[24] Krejsa E A, Valerino M F. Interim prediction method for turbine noise, NASA-TM-X-73566[R]. Washington, D.C.: NASA, 1974.

[25] Fisk W S. Supersonic transport noise reduction technology summary-phase 1, FAA-SS-1772-43[R]. Cincinnati: General Electric Co., 1972.

[26] Sun X F, Hu Z A, Zhou S. Noise prediction of rotor-stator interaction for fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(1): 41-47. (in Chinese) 孙晓峰, 胡宗安, 周盛. 风扇/压气机转子、静子干涉噪声的预测方法[J]. 航空学报, 1989, 10(1): 41-47.

[27] Pieter S, Jörgen Z. In-duct and far-field mode detection techniques[C]//13th AIAA/CEAS Aero-acoustics Conference, 2007.

[28] Tyler J M, Sofrin T G. Axial flow compressor noise studies[J]. Transactions of the Society of Automotive Engineers, 1962, 70: 309-332.

文章导航

/