空间探测原子磁强计的主动磁补偿实验
收稿日期: 2013-11-22
修回日期: 2014-01-14
网络出版日期: 2014-03-25
基金资助
国家自然科学基金(61227902,51375034)
Experiment on Active Magnetic Compensation of Atomic Magnetometer for Space Exploration
Received date: 2013-11-22
Revised date: 2014-01-14
Online published: 2014-03-25
Supported by
National Natural Science Foundation of China (61227902, 51375034)
在空间探测过程中,采用高灵敏无自旋交换弛豫(SERF)原子磁强计在行星表面进行磁场测量是原位物质成分分析的有效手段之一。为了提高SERF原子磁强计的磁场测量灵敏度,必须减小外界磁场扰动对其原子自旋SERF态质量的影响,基于SERF原子磁强计的测量原理,设计了一套主动磁补偿系统。首先,通过测量驱动激光光强获得3个方向的磁场信息;在此基础上,控制电流源和线圈主动产生一个与外界磁场扰动大小相同、方向相反的磁场来补偿扰动,以提高原子自旋SERF态的质量;最后,结合现有的SERF原子磁强计实验平台进行了实验验证。实验结果表明,与手动补偿方式相比,采用本文所述的主动磁补偿系统,可以实时跟踪磁场补偿点,降低系统信号的噪声,补偿了外界磁场的扰动,验证了磁强计主动磁补偿技术的有效性,为后续样机的研制奠定了技术基础。
楚中毅 , 孙晓光 , 万双爱 , 房建成 . 空间探测原子磁强计的主动磁补偿实验[J]. 航空学报, 2014 , 35(9) : 2522 -2529 . DOI: 10.7527/S1000-6893.2013.0521
The spin-exchange-relaxation-free (SERF) atomic magnetometer with ultrahigh sensitive becomes the most effective measurement to analyze the component of the planet in space exploration. In order to improve the sensitivity of the SERF atomic magnetometer, we must avoid the influence on the SERF regime disturbed by environment magnetic field. In this paper we design an active compensation system based on in-situ magnetic measurement to compensate the magnetic disturbance. Firstly, we get the three-axis magnetic field information according to the measurement of pop-laser, then control the current of coil to generate a magnetic field which is opposite and equal to the disturbance, to keep the SERF regime. Finally, we validat the method with the atomic magnetometer experimental setup. The result shows that compared with the manual compensation method, the system can track the magnetic compensation point in real time, reduce the signal noise and compensate the magnetic disturbance successfully, validating the efficiency of the active compensation system and establishing the technique foundation of the production.
[1] Zhang C D, Dong H B. A review of quantum magnetome-ters[J]. Chinese Journal of Engineering Geophysics, 2004, 1(6): 499-507. (in Chinese) 张昌达, 董浩斌. 量子磁力仪评说[J]. 工程地球物理学报, 2004, 1(6): 499-507.
[2] Zhang C D. Recent advances in the research and development of quantum magnetometers[J]. Geophysical & Geochemical Exploration, 2005, 29(4): 283-287. (in Chinese) 张昌达. 量子磁力仪研究和开发近况[J]. 物探与化探, 2005, 29(4): 283-287.
[3] Liu S B. Study on automatic magnetic deviation compensation of magnetic heading measurement for UAV[J]. Acta Aeronautica et Aseronautica Sinica, 2007, 28(2): 411-414. (in Chinese) 刘诗斌. 无人机磁航向测量的自动罗差补偿研究[J]. 航空学报, 2007, 28(2): 411-414.
[4] Ye P, Zhang Y H, Zhai C R, et al. Geomagnetism compensation based on disturbance analysis for shipboard and underwater attitude determenation[J]. Journal of Shanghai Jiaotong University, 2010, 44(9): 1297-1301. (in Chinese) 叶萍, 张炎华, 翟传润, 等. 磁干扰误差补偿算法在舰船及水下航向测量技术中的应用[J]. 上海交通大学学报, 2010, 44(9): 1297-1301.
[5] Huang L, Jing W X. Effects of remanence on attitude determination and control of satellites[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3): 390-394. (in Chinese) 黄琳, 荆武兴. 关于剩磁对卫星姿态确定与控制影响的研究[J]. 航空学报, 2006, 27(3): 390-394.
[6] Chu Z Y, Lei Y A. Parameter matching for deployable manipulator with active-passive composite driver in space probe[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 268-278. (in Chinese) 楚中毅, 雷宜安. 主被动复合驱动空间探测柔性伸杆机构的参数匹配[J]. 航空学报, 2014, 35(1): 268-278.
[7] Brown J M. A new limit on Lorentz and CPT-violating neutron spin interactions using a K-3He comagnetometer[D]. Princeton: Princeton University, 2011.
[8] Wyllie R, Kauer M, Smetana G S, et al. Magnetocardiography with a modular spin-exchange relaxation free atomic magnetometer array[J]. Physics in Medicine and Biology, 2012, 57(9): 2619-2632.
[9] Fang J C, Qin J, Wan S A, et al. Atomic spin gyroscope based on 129Xe-Cs comagnetometer[J]. Chinese Science Bulletin, 2012, 58(13): 1512-1515.
[10] Ledbetter M P, Savukov I M, Acosta V M, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physical Review A, 2008, 77(3): 033408-1-033408-7.
[11] Nelson I A. Physics of practical spin-exchange optical pumping[D]. Madison: University of Whsconsin-Madison, 2001.
[12] Kominis I, Kornack T, Allred J, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.
[13] Qin J, Fang J C, Wan S A. Light intensity fluctuation insensitive faraday polarimeter for atomic magnetometer[C]//IEEE 2011 10th International Conference on Electronic Measurement and Instruments, 2011: 215-219.
[14] Budker D, romalis M. Optical magnetometry[J]. Nature Physics, 2007, 3(4): 227-234.
[15] Seltzer S J. Developments in alkali-metal atomic magnetometry[D]. Princeton: Princeton University, 2008.
[16] Li Z, Wakai R T, Walker T G. Parametric modulation of an atomic magnetometry[J]. Applied Physics Letters, 2006, 89(13): 2357553-1-2357553-3.
[17] Schwindt P, Johnson C. Atomic magnetometer for human magnetoencephalograpy, SAND2010-8443[R]. Albuquerque: Sandia National Laboratories, 2010.
[18] Qin J. Experimental development of SERF atomic spin gyroscope based on 129Xe-Cs[D]. Beijing: Beihang University, 2012. (in Chinese) 秦杰. 基于129Xe-Cs的SERF原子自旋陀螺仪原理实验研究[D]. 北京: 北京航空航天大学, 2012.
/
〈 | 〉 |