流体力学与飞行力学

基于背景网格簇的动网格生成方法

  • 胡会朋 ,
  • 聂玉峰 ,
  • 张阳 ,
  • 蔡力
展开
  • 西北工业大学 理学院, 陕西 西安 710129
胡会朋 男, 硕士研究生.主要研究方向: 动网格生成技术. Tel: 029-88431655 E-mail: huhuipeng@mail.nwpu.edu.cn; 聂玉峰 男, 博士, 教授, 博士生导师.主要研究方向: 高性能计算、 计算材料学、 并行计算方法以及热、 力、 电和磁耦合的数值模拟. Tel: 029-88431655 E-mail: yfnie@nwpu.edu.cn

收稿日期: 2013-12-11

  修回日期: 2014-03-06

  网络出版日期: 2014-03-20

基金资助

国家自然科学基金(11071196)

A New Dynamic Mesh Method Based on a Cluster of Background Meshes

  • HU Huipeng ,
  • NIE Yufeng ,
  • ZHANG Yang ,
  • CAI Li
Expand
  • School of Science, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2013-12-11

  Revised date: 2014-03-06

  Online published: 2014-03-20

Supported by

National Natural Science Foundation of China (11071196)

摘要

提出了基于背景网格簇实现网格变形的新方法.背景网格簇由任一内边界节点和远场边界角点生成的背景网格构成,并随边界运动而变化.通过保持计算网格节点在每一个背景网格中所在单元的面积坐标不变(三维时保持体积坐标不变)而求出一组期望位置,加权平均该组期望位置,确定出该计算网格节点的新位置.其中权值与内边界节点和计算网格节点距离的倒数相关.新方法引入的背景网格簇可以有效地改进单个背景网格的不足之处.算例结果表明:基于背景网格簇的动网格生成方法实现简单,与弹簧近似法相比,新方法因不需要迭代求解方程组而非常高效,且拥有更强的网格变形能力;与Delaunay图映射法相比,该方法背景网格的单元个数极少,因此易于定位,且不会出现背景网格单元交叉的现象,网格变形能力更强,变形后的网格质量更好.

本文引用格式

胡会朋 , 聂玉峰 , 张阳 , 蔡力 . 基于背景网格簇的动网格生成方法[J]. 航空学报, 2014 , 35(11) : 2921 -2931 . DOI: 10.7527/S1000-6893.2014.0016

Abstract

A novel dynamic grid deformation technique based on a cluster of background meshes is presented in this paper. The cluster of background meshes consists of background meshes which are generated by using any node on the internal boundaries and corner points of the far field boundary. By keeping the relative area coefficients unchanged (volume coordinates unchanged in three dimensions), the desired positions of the internal nodes in every background mesh are solved when the background meshes are moved due to the movement of the nodes on the internal boundaries. The new position of a node can be obtained by taking a weighted average of its desired positions. The weights are related to the reciprocal value of the distances between the node and internal boundary nodes. The cluster of background meshes, which is introduced by the new approach, can overcome the shortcomings of using a complex background mesh. Examples demonstrate that the mesh deformation method based on a cluster of background meshes is easy to realize. In comparison with the spring analogy method, it is more efficient for it is non-iterative, and its mesh deformation capacity is stronger. In comparison with the mesh deformation method based on Delaunay graph mapping, it is easier to locate the internal nodes and background meshes will not have overlap between elements for the structure of background meshes is simple. The method based on a cluster of background meshes has a stronger mesh deformation capacity than the Delaunay graph method, and the quality of the deformed mesh is better.

参考文献

[1] Zhou X, Li S X, Sun S L, et al. Advances in the research on unstructured mesh deformation[J]. Advances in Mechanics, 2011, 41(5): 547-561.(in Chinese) 周璇, 李水乡, 孙树立, 等. 非结构网格变形方法研究进展[J]. 力学进展, 2011, 41(5): 547-561.

[2] Blom F J. Considerations on the spring analogy[J]. International Journal for Numerical Methods in Fluids, 2000, 32(6): 647-668.

[3] Rendall T C S, Allen C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10): 1519-1559.

[4] Liu X, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2): 405-423.

[5] Farhat C, Degand C, Koobus B, et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1): 231-245.

[6] Rendall T C S, Allen C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17): 6231-6249.

[7] Yao S B, Guo D L, Yang G W. Aerodynamic optimization of high-speed train based on RBF mesh deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 982-986. (in Chinese) 姚拴宝, 郭迪龙, 杨国伟. 基于径向基函数网格变形的高速列车头型优化[J]. 力学学报, 2013, 45(6): 982-986.

[8] Bai J Q, Liu N, Qiu Y S, et al. Optimization of multi-foil based on RBF mesh deformation method and modified particle swarm optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2701-2715.(in Chinese) 白俊强, 刘南, 邱亚松, 等. 基于 RBF 动网格方法和改进粒子群优化算法的多段翼型优化[J]. 航空学报, 2013, 34(12): 2701-2715.

[9] Zhao Y, Forhad A. A general method for simulation of fluid flows with moving and compliant boundaries on unstructured grids[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(39): 4439-4466.

[10] de Boer A, van der Schoot M S, Bijl H. Mesh deformation based on radial basis function interpolation[J]. Computers & Structures, 2007, 85(11): 784-795.

[11] Witteveen J A S, Bijl H. Explicit mesh deformation using inverse distance weighting interpolation, AIAA-2009-3996[R]. Reston: AIAA, 2009.

[12] Witteveen J A S. Explicit and robust inverse distance weighting mesh deformation for CFD, AIAA-2010-165[R].Reston: AIAA, 2010.

[13] Gerhold T, Neumann J. The parallel mesh deformation of the DLR TAU-Code[M]//New Results in Numerical and Experimental Fluid Mechanics VI. Berlin: Springer Berlin Heidelberg, 2008: 162-169.

[14] Allen C B. Parallel universal approach to mesh motion and application to rotors in forward flight[J]. International Journal for Numerical Methods in Engineering, 2007, 69(10): 2126-2149.

[15] Luke E, Collins E, Blades E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2): 586-601.

[16] Zhou X, Li S X. A new mesh deformation method based on disk relaxation algorithm with pre-displacement and post-smoothing[J]. Journal of Computational Physics, 2013, 235: 199-215.

[17] Xiao T H, Ang H S, Tong C. A new dynamic mesh generation method for large movements of flapping-wings with complex geometries[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 41-48. (in Chinese) 肖天航, 昂海松, 仝超. 大幅运动复杂构形扑翼动态网格生成的一种新方法[J]. 航空学报, 2008, 29(1): 41-48.

[18] Wu Y Z, Tian S L, Xia J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 15-16. (in Chinese) 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1): 15-26.

[19] Lefrancois E.A simple mesh deformation technique for fluid-structure interaction based on a submesh approach[J].Interational Journal for Numerical Methods in Engineering, 2008, 75(9): 1085-1101.

[20] Zhou X, Li S X, Chen B. Spring-interpolation approach for generating dynamic mesh [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1389-1395.(in Chinese) 周璇, 李水乡, 陈斌. 非结构动网格生成的弹簧-插值联合方法[J]. 航空学报, 2010, 31(7): 1389-1395.

[21] Lv C. Study of dynamic grid deformationical algorithm and its application[D]. Changsha: National University of Defense Technology, 2010. (in Chinese) 吕超. 变形网格计算方法研究及其应用[D]. 长沙: 国防科技大学, 2010.

文章导航

/