翼型风洞试验中不确定性分析的自动微分方法
收稿日期: 2013-10-14
修回日期: 2013-12-20
网络出版日期: 2014-03-20
基金资助
国家自然科学基金(11272264)
Uncertainty Analysis of Airfoil Wind Tunnel Tests with Automatic Differentiation
Received date: 2013-10-14
Revised date: 2013-12-20
Online published: 2014-03-20
Supported by
National Natural Science Foundation of China (11272264)
为了深入分析风洞试验中来流参数的扰动对翼型气动试验结果的影响,基于雷诺平均Navier-Stokes方程有限体积方法,采用Spalart-Allmaras湍流模型,发展了一套二维计算流体力学(CFD)程序,应用自动微分方法对CFD程序进行改造,建立了对应过程的敏感性导数计算方法和程序,可以一次性获得翼型各处压力系数和所有气动力系数对迎角、马赫数和雷诺数的敏感性导数。研究结果表明:在亚声速和跨声速中,翼型压力分布对马赫数最敏感,比对雷诺数的敏感性至少高8个量级,但是,在亚声速来流中,翼型压力系数的不确定性由迎角摄动引起的部分比马赫数摄动引起的部分高1个量级,迎角控制精度很大程度上决定了风洞试验结果的精度;在跨声速来流中,迎角摄动引起的不确定性比马赫数摄动引起的要低1个量级,同时,对马赫数敏感性的增强使得翼型压力分布的不确定性在跨声速范围比在亚声速范围高1个量级,此时马赫数的控制精度很大程度上决定了风洞试验结果的精度。
徐林程 , 王刚 , 武洁 , 叶正寅 . 翼型风洞试验中不确定性分析的自动微分方法[J]. 航空学报, 2014 , 35(8) : 2102 -2111 . DOI: 10.7527/S1000-6893.2013.0503
In order to obtain a deep understanding of the way that the perturbations from free stream influence the test results, based on finite volume algorithm, solving the Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras turbulence model, we develop a set of computational fluid dynamics (CFD) program for 2 dimension problems and then build the corresponding process to compute sensitive derivatives with the method of automatic differentiation. With the transformed program, one computational course yields derivatives of all aerodynamic coefficients with respect to angle of attack, Mach number and Reynolds number. As the computational results show, in subsonic flow and transonic flow, surface pressure coefficients of the airfoil are the most sensitive to Mach number, to which the sensitivities are at least 8 order higher than that to Reynolds number. However, in subsonic flow, uncertainties caused by angle of attack perturbations is one order higher than that caused by Mach number perturbations, which means that wind tunnel accuracy of angle of attack would determine the accuracy of experimental results to a great extent, while transonic flow reverses the above results and conclusion. Furthermore, increased sensitivities to Mach number lead to the fact that uncertainties of pressure coefficients of the airfoil in transonic flow are one order higher than that in subsonic flow, which means, in transonic flow, wind tunnel accuracy of Mach number should be raised to guarantee the accuracy of the experimental results.
[1] Cheng K M, Zhang Q W, Huang Y Y, et al. Correction for Reynolds number in transonic wind-tunnel testing[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(11): 1383-1385. (in Chinese) 程克明, 张其威, 黄奕裔, 等. 跨音速风洞试验的Re数修正[J]. 航空学报, 1994, 15(11): 1383-1385.
[2] Huang Y, Dong L X, Zhao K C. On the correlation of force test results of a tactical missile calibration model in five different wind tunnels[J]. Experiments and Measurements in Fluid Mechanics, 2003, 16 (2): 16-20. (in Chinese) 黄勇, 董立新, 赵克诚. 战术导弹标模五座风洞实验数据的相关性研究[J]. 流体力学实验与测量, 2003, 16(2): 16-20.
[3] Wang J J, Wu K. Experimental investigation of the effect of wing elastic deformations on aerodynamics[J]. Acta Aerodynamica Sinica, 2007, 25(1): 55-59. (in Chinese) 王晋军, 伍康. 机翼弹性变形对气动特性影响的实验研究[J]. 空气动力学学报, 2007, 25(1): 55-59.
[4] Yun Q L. The error analysis for wind tunnel testing data[J]. Aerodynamic Experiment and Measurement & Control, 1994, 8(2): 62-70. (in Chinese) 恽起麟. 风洞实验数据误差分析[J]. 气动实验与测量控制, 1994, 8(2): 62-70.
[5] Smith C L, Yoes D T. Automated analysis of wind tunnel data repeatability, AIAA-2007-1632. Reston: AIAA, 2007.
[6] Belter D L. Comparison of wind tunnel data repeatability with uncertainty analysis estimates, AIAA-1998-2714. Reston: AIAA, 1998.
[7] Hemsch M, Grubb J, Krieger W, et al. Langley wind tunnel data quality assurance-check standard results, AIAA-2000-2201. Reston: AIAA, 2000.
[8] Kammeyer M E, Rueger M L. On the classification of errors: systematic, random, and replication level, AIAA-2000-2203. Reston: AIAA, 2000.
[9] Ulbrich N M. Test data uncertainty analysis algorithm of NASA ames wind tunnels[J]. AIAA Journal, 2003, 41(8): 1616-1619.
[10] Kammeyer M E, Wozniak R W. An uncertainty analysis for low-speed wind tunnel pressure measurements, AIAA-2004-2196. Reston: AIAA, 2004.
[11] Mader C A, Martins J R R A. Computation of aircraft stability derivatives using an automatic differentiation adjoint approach[J]. AIAA Journal, 2011, 49(12): 2737-2750.
[12] Jones D, Mueller J D, Bayyuk S. CFD development with automatic differentiation, AIAA-2012-0573. Reston: AIAA, 2012.
[13] Lyu Z J, Kenway G K W, Paige C, et al. Automatic differentiation adjoint of the reynolds-averaged navier-stokes equations with a turbulence model, AIAA-2013-2581. Reston: AIAA, 2013.
[14] Dalle D J, Driscoll J F. Continuous differentiation of complex systems applied to a hypersonic vehicle//AIAA Atmospheric Flight Mechanics Conference, 2012.
[15] Jiang Z S, Wu Y Z, Jiang H. Comparison studies on numerical methods for sensitivity analysis[J]. Computer & Digital Engineering, 2009, 37(5): 1-5. (in Chinese) 蒋占四, 吴义忠, 蒋慧. 敏度分析的数值方法比较研究[J]. 计算机与数字工程, 2009, 37(5): 1-5.
[16] Li X. Process system optimization based on automatic differentiation. Hangzhou: Zhejiang University, 2003. (in Chinese) 李翔. 基于自动微分算法的过程系统优化. 杭州: 浙江大学, 2003.
[17] Pan L, Gu L X, Gong C L. Fast automatic differentiation and its application to flight vehicle parameter optimization[J].Journal of Northwestern Polytechnical University, 2007, 25(3): 398-401. (in Chinese) 潘雷, 谷良贤, 龚春林. 改进自动微分方法及其在飞行器气动外形优化中的应用[J]. 西北工业大学学报, 2007, 25(3): 398-401.
[18] Gao Y S, Wu Y Z, Xia J. A discrete adjoint-based approach for airfoil optimization on unstructed meshes[J]. Acta Aerodynamica Sinica, 2013, 31(2): 244-249. (in Chinese) 高宜胜, 伍贻兆, 夏健. 基于非结构网格离散型伴随方法的翼型优化[J]. 空气动力学学报, 2013, 31(2): 244-249.
[19] Li J Q, Zhang P, Wang Y Q. Method of uncertainty analysis for wind tunnel test data[J]. Acta Aerodynamica Sinica, 2000, 18(3): 300-306. (in Chinese) 李建强, 张平, 王义庆. 风洞数据不确定度分析方法[J]. 空气动力学学报, 2000, 18(3): 300-306.
[20] Wang G D, Chen Z L, Liu Z Q. Study on uncertainty evaluation methods of aerodynamic parameter estimation for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2057-2063. (in Chinese) 王贵东, 陈则霖, 刘子强. 飞行器气动参数估计不确定度评价方法研究[J]. 航空学报, 2013, 34(9): 2057-2063.
[21] Hascot L, Pascual V. TAPENADE 2.1 user's guide, RT-0300. Sophia Antipolis: INRIA, 2004.
[22] Griewank A. On automatic differentiation[J]. Mathematical Programming: Recent Developments and Applications, 1989, 6(6): 83-107.
[23] Wang G, Ye Z Y. Generation of three dimensional mixed and unstructured grids and its application in solving Navier-Stokes equations[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(5): 385-390.(in Chinese) 王刚, 叶正寅. 三维非结构混合网格生成与N-S方程求解[J]. 航空学报, 2003, 24(5): 385-390.
[24] Moore R E. Methods and applications of interval analysis[M]. Philadelphia: Siam, 1979: 14.
[25] Barche J. Experimental data base for computer program assessment, AGARD Advisory Report No. 138[M]//Fluid Dynamics Panel Working Group 04. London: Tecknicnl Editing and Reproduerion Lrd Horfijrd House, 1979: 32.
/
〈 | 〉 |