固体力学与飞行器总体设计

电-热耦合对航空复合材料拉伸及疲劳性能的影响

  • 蔺越国 ,
  • Macro GIGLIOTTI ,
  • Marie Christine LAFARIE-FRENOT ,
  • Jinbo BAI
展开
  • 1. 中国民航大学 航空工程学院, 天津 300300;
    2. 国立高等机械与航空技术学院 材料物理与力学系, 普瓦捷 8691, 法国;
    3. 巴黎中央理工学院 固体力学与材料结构力学实验室, 巴黎 92290, 法国
Macro GIGLIOTTI 男, 博士, 教授, 博士生导师.主要研究方向: 固体力学,纳米复合材料. Tel: 033-(0)549498340 E-mail: macro.gigliotti@ensma.fr;Marie Christine LAFARIE-FRENOT 女, 博士, 教授, 博士生导师.主要研究方向: 固体力学,纳米复合材料力学. Tel: 033-(0)549498239 E-mail: marie-christine.lafarie@ensma.fr

收稿日期: 2014-01-07

  修回日期: 2014-02-20

  网络出版日期: 2014-03-17

基金资助

中国民航大学科研基金(06kym10,07kym07);中国民航大学预研重大项目(3122014P002)

Thermo-electrical Coupling Effect on Tensile and Fatigue Strength of Composite Materials for Aeronautical Application

  • LIN Yueguo ,
  • Macro GIGLIOTTI ,
  • Marie Christine LAFARIE-FRENOT ,
  • Jinbo BAI
Expand
  • 1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China;
    2. Department of Physic and Mechanic of Materials, ISAE-ENSMA, Poitiers 86961, France;
    3. Laboratory of Mechanic of Sols, Structures and Materials, Central College of Paris, 92290 Paris, France

Received date: 2014-01-07

  Revised date: 2014-02-20

  Online published: 2014-03-17

Supported by

CAUC Research Foundation (06kym10, 07kym07); Pre-research Major Project of CAUC (3122014P002)

摘要

为研究碳纤维增强树脂基复合材料(CFRP)层合板的导电性能和电-热耦合效应及其对拉伸和疲劳性能的影响,主要针对2种不同铺层的试件(单向层合板(UD)[0]8和准各向异性层合板(QI)[45/90/-45/0]s)进行导电及电-热耦合实验和通电状态下的拉伸及疲劳实验.在电-热耦合实验中分别对试件通以1~8 A的直流电和交流电,测量其温度场的分布及最高温度,以确定温度对电阻的影响.依据实验现象建立了简化后的电-热耦合分析模型,并与实验结果进行对比,发现两者吻合很好.简化后的电-热耦合模型能够很好地预测试件在达到稳态平衡时的最高温度值.在通电情况下对不同初始状态时的QI试件进行拉伸和疲劳实验,通过实验发现,在疲劳加载过程中无论是通以直流电、交流电或者是改变电流强度和电流频率,对试件的疲劳寿命影响不大,没有发现明显差异,但在实验过程中试件表面的温度会随着电流强度的增加而升高.同时,在监测试件沿着纤维方向的电阻变化时发现,在一定的疲劳载荷下,随着循环次数的增加,试件的电阻会不断增加,这表明试件内部出现了损伤,累积后直至试件断裂.依据实验现象分别建立了电阻模型-1和电阻模型-2,分析计算后发现模型-1能够较好地模拟试件变形的线性阶段(εxx≤0.4%),而模型-2能较好地模拟非线性阶段直至试件断裂(εxx>0.4%).

本文引用格式

蔺越国 , Macro GIGLIOTTI , Marie Christine LAFARIE-FRENOT , Jinbo BAI . 电-热耦合对航空复合材料拉伸及疲劳性能的影响[J]. 航空学报, 2014 , 35(12) : 3315 -3323 . DOI: 10.7527/S1000-6893.2013.0549

Abstract

In order to determine the characteristics of electrical conductivity and thermo-electrical coupling effect on the tensile and fatigue strength of carbon fiber reinforced polymer (CFRP) composite laminates, the present paper focuses on two composite materials ([0]8 UD and [45/90/-45/0]s QI)which are prepared for the electrical and thermo-electrical fatigue experiments, direct current (DC) and alternating current (AC) from 1 A to 8 A are injected to the samples, and their temperature field and maximum temperature are monitored simultaneously in order to find itheir effect on the electrical resistance change. A simplified thermo-electrical analysis model is established based on the experimental phenomena and then the experimental results are compared with simulation results and a good agreement is found between them. The model is effective in describing the thermo-electrical phenomena at a steady state of temperature. In the condition of injecting of current, fatigue tests are prepared for different states of samples, the results show that the electrical current—no matter DC or AC or chang the value of current/frequency—has no obvious effect on the fatigue number of cycles, and has no obvious effect on the evolution of fatigue damage, but the temperature will raise while the current increases. Simutaneously, by monitoring the longitudinal resistance, it can be found that at certain loading level the resistance will augment while the number of cyclic increase. This phenomena shows inside of of sample may have some damage accumulating until the fracture of the specimen. Two models considering the relationship between electric resistance and strain based on the experiments are proposed to simulate the experiments, Model-1 is used to calculate the linear stage of strain (εxx≤0.4%) while Model-2 could be better used to simulate the nonlinear stage until the break of samples (εxx>0.4%).

参考文献

[1] Ma H, Zhang D L, Meng F X, et al. Experiment of electro-thermal anti-icing on a composite assembly[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1846-1853. (in Chinese) 马辉, 张大林, 孟繁鑫, 等. 复合材料部件电加热防冰性能试验[J]. 航空学报, 2013, 34(8): 1846-1853.

[2] Xia Z H, Okabe T, Park J B, et al. Quantitative damage detection in CFRP composites: coupled mechanical and electrical models[J]. Composites Science and Technology, 2003, 63(2): 1411-1422.

[3] Curtin W A. Stochastic damage evolution and failure in fiber-reinforced composites[J]. Advances in Applied Mechanics, 2000, 36(9): 162-253.

[4] Vavouliotis A, Kostopoulos P V. On the fatigue life prediction of CFRP laminates using the electrical resistance change method[J]. Composites Science and Technology, 2011, 71(18): 630-642.

[5] Schulte K, Baron C. Load and failure analysis of CFRP laminates by means of electrical resistively measurements[J]. Composites Science and Technology, 1989, 36(19): 63-76.

[6] Schulte K, Wittich H. The electrical response of strained and or damaged polymer-matrix composites[C]//Proceedings of ICCM-10th, 1995: 349-356.

[7] Sierakowski R L, Telitchev I Y, Zhupanska O I. On the impact response of electrified carbon fiber polymer matrix composites: effects of electric current intensity and duration[J]. Composites Science and Technology, 2008, 68(15): 639-649.

[8] Snyder D R, Sierakowski R L, Chenette E R, et al. Preliminary assessment of electro-thermo-magnetically loaded composite panel impact resistance/crack propagation with high speed digital laser photography[C]//24th International Congress on High-speed Photography and Photonics, Proceedings of SPIE, 2001: 488-513.

[9] Zhupanska O I, Sierakowski R L. Effects of an electromagnetic field on the mechanical response of composites[J]. Composites Materials, 2007, 41(10): 633-652.

[10] Park J B, Okabe L T. Electromechanical modeling of unidirectional CFRP composites under tensile loading condition[J]. Composites: Part A, 2002, 33(1): 267-275.

[11] Abry J C, Bochard S, Chateauminois A, et al. In situ detection of damage in CFRP laminates by electrical resistance measurements[J]. Composites Science and Technology, 1999, 59(16): 925-935.

[12] Yang J N, Lee L J, Sheu D Y. Modulus reduction and fatigue damage of matrix dominated composite laminates[J]. Composite Structures, 1992, 21(19): 92-100.

[13] Seo D C, Lee J J. Damage detection of CFRP laminates using electrical resistance measurement and neural network[J]. Composite Structures, 1999, 47(10): 525-530.

[14] Gigliotti M, Lafarie M C, Grandidier J C. Development of experimental and modeling tools for the characterization of the thermo-electro-mechanical behavior of composite materials for aircraft applications[J]. Mécanique & Industries, 2011, 12(11): 87-101.

[15] Gigliotti M, Grandidier J C, Lafarie-Frenot M C, et al. Development of experimental and modeling tools for electro-mechanical fatigue tests in composite materials for aircraft applications[C]//The 14th European Conference on Composite Materials, 2010: 99-113.

文章导航

/