火星探测器气动外形/弹道一体化多目标优化
收稿日期: 2013-12-05
修回日期: 2014-03-05
网络出版日期: 2014-03-07
基金资助
国家自然科学基金(51375486)
Aerodynamic Shape and Trajectory Integrated Multiobjective Optimization for Mars Explorer
Received date: 2013-12-05
Revised date: 2014-03-05
Online published: 2014-03-07
Supported by
National Natural Science Foundation of China (51375486)
针对火星探测器概念设计阶段的需求,提出了融合气动外形、弹道和开伞条件的一体化多目标优化设计方法。首先建立了火星探测器进入段三自由度弹道运动方程,基于修正牛顿理论推导了适用于具有较大半锥角球锥外形的气动参数估算模型,采用Sutton-Graves公式计算了驻点热流密度。以开伞高度、总吸热量和容积率为目标函数建立了火星探测器气动外形/弹道一体化多目标优化模型,采用基于分解的多目标进化算法(MOEA/D)进行求解计算并与参考设计进行了对比。数值结果表明:多目标优化方法提供多个三目标均优于参考设计的Pareto最优解,为火星探测器的概念设计提供了一定的参考依据。
关键词: 火星探测器; 多目标优化; 基于分解的多目标进化算法; 气动外形; 概念设计
丰志伟 , 张青斌 , 高兴龙 , 唐乾刚 , 杨涛 . 火星探测器气动外形/弹道一体化多目标优化[J]. 航空学报, 2014 , 35(9) : 2461 -2471 . DOI: 10.7527/S1000-6893.2014.0011
An integrated multiobjective optimization design framework is developed for the conceptual design of the Mars explorer, in which the aerodynamic shape, trajectory and the condition of parachute deployment are considered simultaneously. The three degree of freedom motion equation is established; the modified Newtonian flow theory is employed to calculate the aerodynamic parameters, which is suitable to the sphere-cone shape with large half cone angle; the Sutton-Graves equation are adopted to compute the stagnation heat flux. In the integrated multiobjective optimization problem, the three optimization objectives are parachute deployment altitude, total heat and volumetric efficiency, which are solved by using the multiobjective evolutionary algorithm based on decomposition (MOEA/D). The numerical simulation results show that the proposed method can obtain multiple Pareto optimal solutions whose three objectives are all better than those of baseline design, and it can be used in the conceptual design of Mars explorer.
[1] Ren G F, Zhu S Y, Cui P Y, et al. Trajectory optimization for precision landing at Mars based on the Gaussian pseudospectral method[J]. Deep Space Exploration, 2011, 9(2): 1-7. (in Chinese) 任高峰, 朱圣英, 崔平远, 等. 基于高斯伪谱法的火星精确着陆轨迹优化方法研究[J]. 深空探测研究, 2011, 9(2): 1-7.
[2] Rong W. Research on the deceleration and landing technology for Mars explorer[D]. Beijing: China Academy of Space Technology, 2008. (in Chinese) 荣伟. 火星探测器减速着陆技术研究[D]. 北京: 中国空间技术研究院, 2008.
[3] Theisinger J E, Braun R D. Multi-objective hypersonic entry aeroshell shape optimization[J]. Journal of Spacecraft and Rockets, 2009, 46(5): 957-966.
[4] Johnson J E. Aerothermodynamic optimization of Earth entry blunt-body heat shields for lunar and Mars return[D]. Washington, D, C.: University of Maryland, 2009.
[5] Johnson J E, Starkey R P, Lewis M J. Aerothermodynamic optimization of reentry heat shield shapes for a crew exploration vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(4): 849-859.
[6] Grant M J, Mendeck G F. Mars science laboratory entry optimization using particle swarm methodology[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2007.
[7] Ren G F, Cui P Y, Cui H T, et al. A new method of rapid trajectory optimization for Mars pin point landing[J]. Journal of Astronautics, 2013, 34(4): 464-472. (in Chinese) 任高峰, 崔平远, 崔祜涛, 等. 一种新型火星定点着陆轨迹快速优化方法[J]. 宇航学报, 2013, 34(4): 464-472.
[8] Wang J, Pei H L, Wang N Z. Research on ablation for crew return vehicle based on re-entry trajectory and aerodynamic heating environment[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 80-89. (in Chinese) 王俊, 裴海龙, 王乃洲. 基于再入轨迹和气动热环境的返回舱烧蚀研究[J]. 航空学报, 2014, 35(1): 80-89.
[9] Hou L Q, Li H N, Huang F M, et al. A semi-analytical integrated model for capsule entering Mars atmosphere[J]. Journal of Astronautics, 2011, 32(11): 2312-2318. (in Chinese) 侯黎强, 李恒年, 黄福铭, 等. 一种半解析方法火星再入探测器一体化设计模型[J]. 宇航学报, 2011, 32(11): 2312-2318.
[10] Deb K, Pratap A, Agrwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[11] Zhang Q, Li H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[12] Liu X, Lu H, Chen X. Optimization of navigation constellation by a multiobjective evolutionary algorithm based on decomposition[J]. Microcomputer Information, 2012, 28(9): 214-216. (in Chinese) 刘欣, 路辉, 陈晓. 基于分解思想的导航星座多目标优化[J]. 微计算机信息, 2012, 28(9): 214-216.
[13] Fan P L, Yang T, Zhang X J. Multi-objective optimization of hypersonic test vehicle[J]. Journal of Astronautics, 2010, 31(4): 973-980. (in Chinese) 范培蕾, 杨涛, 张晓今. 高超声速试飞器系统的多目标优化设计[J]. 宇航学报, 2010, 31(4): 973-980.
[14] Konstantinidis A, Yang K. Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D[J]. Applied Soft Computing, 2011, 11(6): 4117-4134.
[15] Zhang Q B, Feng Z W, Liu Z M, et al. Fuel-time multiobjective optimal control of flexible structures based on MOEA/D[J]. Journal of National University of Defense Technology, 2009, 31(6): 73-76. (in Chinese) 张青斌, 丰志伟, 刘泽明, 等. 基于MOEA/D的柔性结构燃料-时间多目标优化控制研究[J]. 国防科技大学学报, 2009, 31(6): 73-76.
[16] Zhang J D, Tang Q G, Zhang Q B, et al. The research on multiple-impulse correction submunition multi-objective optimization based on MOEA/D[J]. Journal of Projectiles, Rockets, Missile and Guidance, 2010, 30(2): 195-197. (in Chinese) 张建东, 唐乾刚, 张青斌, 等. 基于MOEA/D算法的多脉冲末修子弹多目标优化设计研究[J]. 弹箭与制导学报, 2010, 30(2): 195-197.
[17] Desai P N, Knocke P C. Mars exploration rovers entry, descent, and landing trajectory analysis[J]. The Journal of the Astronautical Sciences, 2007, 55(3): 311-323.
[18] Hankey W L, Elliott G A. Hypersonic lifting body optimization[J]. Journal of Spacecraft and Rockets, 1968, 5(12): 1463-1467.
[19] Qu Z H, Liu W, Zeng M, et al. Hypersonic aerodynamics[M]. Changsha: Press of National University of Defense Technology, 2001: 19-21. (in Chinese) 翟章华, 刘伟, 曾明, 等. 高超声速空气动力学[M]. 长沙: 国防科技大学出版社, 2001: 19-21.
[20] Thomas C. Aerodynamic validation using MER and phoenix entry flight data[D]. Raleigh: North Carolina State University, 2011.
[21] Zhao H Y. Re-entry dynamics and guidance of flight vehicle[M]. Changsha: Press of National University of Defense Technology, 1997: 454. (in Chinese) 赵汉元. 飞行器再入动力学和制导[M]. 长沙: 国防科技大学出版社, 1997: 454.
[22] Sutton K, Graves R A. A general stagnation-point convective-heating equation for arbitrary gas mixtures. Washington, D.C.: NASA, 1971.
[23] Shen H, Seywald H, Powell R W. Desensitizing the pin-point landing trajectory on Mars[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2008.
[24] Deb K. Multi-objective optimization using evolutionary algorithms[M]. New York: Wiley, 2001.
[25] Wells G, Braun R. Trajectory reconstruction of a Martian planetary probe mission: reconstruction of the Spirit Mars explorer rover entry, descent, and landing performance[C]//2nd International ARA Days, 2008.
/
〈 | 〉 |